Pregnancy lowers the risk of breast cancer, largely attributable to alpha-fetoprotein (AFP). A small AFP-derived peptide (AFPep) which mimics the active site of AFP has been developed and may be useful for decreasing the risk of breast cancer for women. AFPep has been shown previously to stop the growth of estrogen-dependent human breast cancer xenografts in mice and prevent carcinogen-induced breast cancer in a rat model. Since AFPep disrupts an estrogen-responsive pathway, it is essential to assess its effects on the female reproductive cycle and fertility. Ten cycling female Sprague-Dawley rats (age 81 days) were given 100 microg AFPep in saline s.c. daily for 20 days. A second group of ten rats was given 50 microg tamoxifen s.c. daily and a third group received saline only. Vaginal smears were obtained twice per day and stained to assess estrous cycle phase. After completion of estrous cycle assessment (five cycles, 21 days), rats were maintained on drug and allowed to mate. Effects on birth of offspring and maternal body weights were assessed. AFPep had no significant effect on the incidence or duration of any estrous cycle phase, and no effect on reproductive potential or maternal body mass. Tamoxifen significantly increased the length of diestrus, locking the cycle in this phase for most animals. Only half of the tamoxifen-treated rats mated, and none became pregnant. Tamoxifen significantly slowed the rate of body mass increase. In rats, AFPep has no toxicity and no effect on female reproduction. This molecule may be developed into an attractive modality for prevention of breast cancer in women.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or_00000405DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
estrous cycle
16
cycle phase
12
cycle fertility
8
risk breast
8
cancer women
8
maternal body
8
body mass
8
afpep
7
breast
6

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Introduction: Management of pain associated with breast cancer surgeries is crucial in reducing incidence of postmastectomy pain syndrome. The pain distribution involves the anterior chest wall, axillary area and ipsilateral upper limb.

Objective: This study was designed to investigate the effect of bilevel erector spinae plane block (ESPB) with high thoracic block vs the conventional unilevel ESPB vs opioids in patients with cancer undergoing modified radical mastectomy regarding pain control and reducing pain in axilla.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women. In response to the need to hospital stays and minimize waiting time for surgery, particularly during the COVID-19 pandemic, the National Cancer Institute developed the One Day Surgery with Breast cancer Home Recovery program (ODS BHR NCI). The aim of study is to assess the success rate of breast cancer surgeries conducted through this program and to evaluate the incidence of complications.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!