trans-[MoX(2)(dppe)(2)] (X = I, Br) act as inner-sphere electron-transfer mediators for the electrocatalytic reduction of organohalides RX to R + X(-), at both Mo(II)--> Mo(I) and Mo(I)--> Mo(0) reduction processes, each of them involving a cathodically induced heterolytic metal-halide bond cleavage with liberation of X(-) that is followed by addition of RX to the metal. Digital simulation of cyclic voltammetry at a wide range of scan rates allowed to estimate the rate constants of the various chemical steps for both electrocatalytic cycles, which were compared in terms of Mo-X bond dissociation energies, electronic and stereochemical effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b811393a | DOI Listing |
Heliyon
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
The shortcomings of precious metal based catalysts have limited the development of novel energies. So, developing low-cost and high performance transition metal based catalysts is one of the most feasible way to substitute the precious metal based catalysts. In all of the developed catalysts for oxygen reduction reactions (ORR), the iron-based nitrogen doped carbon nanotube (N-CNT) show great promise.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of restructuring on the electrocatalyst performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
The electrocatalytic nitrogen reduction reaction (eNRR) is an attractive strategy for the green and distributed production of ammonia (NH); however, it suffers from weak N adsorption and a high energy barrier of hydrogenation. Atomically dispersed metal dual-site catalysts with an optimized electronic structure and exceptional catalytic activity are expected to be competent for knotty hydrogenation reactions including the eNRR. Inspired by the bimetallic FeMo cofactor in biological nitrogenase, herein, an atomically dispersed FeMo dual site anchored in nitrogen-doped carbon is proposed to induce a favorable electronic structure and binding energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!