Transcription factors are key components of transcriptional regulatory networks governing virtually all aspects of plant growth and developmental processes. Their activities are regulated at various steps, including gene transcription, posttranscriptional mRNA metabolism, posttranslational modifications, nucleocytoplasmic transport, and controlled proteolytic cleavage of membrane-anchored, dormant forms. Dynamic protein dimerization also plays a critical role in this process. An exquisite regulatory scheme has recently been proposed to modulate the action of transcription factors. Small peptides possessing a protein dimerization motif but lacking the DNA-binding motif form nonfunctional heterodimers with a group of specific TFs, inhibiting their transcriptional activation activities. Extensive searches for small proteins that have a similar structural organization in the databases revealed that small peptide-mediated transcription control is not an exceptional case but would be a regulatory mechanism occurring widespread in the Arabidopsis genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634540PMC
http://dx.doi.org/10.4161/psb.3.9.6225DOI Listing

Publication Analysis

Top Keywords

transcription factors
8
protein dimerization
8
small
4
small interfering
4
interfering peptides
4
peptides novel
4
novel transcriptional
4
transcriptional control
4
transcription
4
control transcription
4

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Modeling the response to interleukin-21 to inform natural killer cell immunotherapy.

Immunol Cell Biol

January 2025

Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.

Natural killer (NK) cells are emerging agents for cancer therapy. Several different cytokines are used to generate NK cells for adoptive immunotherapy including interleukin (IL)-2, IL-12, IL-15 and IL-18 in solution, and membrane-bound IL-21. These cytokines drive NK cell activation through the integration of signal transducers and activators of transcription (STAT) and nuclear factor-kappa B (NF-κB) pathways, which overlap and synergize, making it challenging to predict optimal cytokine combinations for both proliferation and cytotoxicity.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Background: Immunotherapy is a significant risk factor for severe COVID-19 in multiple myeloma (MM) patients. Understanding how immunotherapies lead to severe COVID-19 is crucial for improving patient outcomes.

Methods: Human protein microarrays were used to examine the expression of 440 protein molecules in MM patients treated with bispecific T-cell engagers (BiTe) (n = 9), anti-CD38 monoclonal antibodies (mAbs) (n = 10), and proteasome inhibitor (PI)-based regimens (n = 10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!