Liver sinusoidal endothelial cells are a major endogenous source of Factor VIII (FVIII), lack of which causes the human congenital bleeding disorder hemophilia A. Despite extensive efforts, gene therapy using viral vectors has shown little success in clinical hemophilia trials. Here we achieved cell type-specific gene targeting using hyaluronan- and asialoorosomucoid-coated nanocapsules, generated using dispersion atomization, to direct genes to liver sinusoidal endothelial cells and hepatocytes, respectively. To highlight the therapeutic potential of this approach, we encapsulated Sleeping Beauty transposon expressing the B domain-deleted canine FVIII in cis with Sleeping Beauty transposase in hyaluronan nanocapsules and injected them intravenously into hemophilia A mice. The treated mice exhibited activated partial thromboplastin times that were comparable to those of wild-type mice at 5 and 50 weeks and substantially shorter than those of untreated controls at the same time points. Further, plasma FVIII activity in the treated hemophilia A mice was nearly identical to that in wild-type mice through 50 weeks, while untreated hemophilia A mice exhibited no detectable FVIII activity. Thus, Sleeping Beauty transposon targeted to liver sinusoidal endothelial cells provided long-term expression of FVIII, without apparent antibody formation, and improved the phenotype of hemophilia A mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701853PMC
http://dx.doi.org/10.1172/JCI34332DOI Listing

Publication Analysis

Top Keywords

hemophilia mice
20
sleeping beauty
16
liver sinusoidal
16
sinusoidal endothelial
16
endothelial cells
16
factor viii
8
mice
8
beauty transposon
8
mice exhibited
8
wild-type mice
8

Similar Publications

: Hemophilia A is associated with frequent bleeding episodes, joint damage, and reduced bone mineral density (BMD). The role of coagulation factors and inflammatory cytokines on bone metabolism, particularly on osteoblast function, is of increasing interest. However, significant inter-species differences in bone remodeling raise concerns about the translatability of findings from murine models to human systems.

View Article and Find Full Text PDF

Hemophilia A (HA) is caused by mutations in coagulation factor VIII (FVIII). Genome editing in conjunction with patient-derived induced pluripotent stem cells (iPSCs) is a promising cell therapy strategy, as it replaces dysfunctional proteins resulting from genetic mutations with normal proteins. However, the low expression level and short half-life of FVIII still remain significant limiting factors in the efficacy of these approaches in HA.

View Article and Find Full Text PDF

Coagulation is related to inflammation, but the key pathway, especially innate immune system and coagulation regulation, is not well understood and need to be further explored. Here, we demonstrated that neutrophil gelatinase-associated lipocalin (NGAL), an innate immune inflammatory mediator, is upregulated in thrombosis patients. Furthermore, it contributes to the initiation and amplification of coagulation, hemostasis, and thrombosis.

View Article and Find Full Text PDF

Recently approved adeno-associated viral (AAV) vectors for liver monogenic diseases haemophilia A and B are exemplifying the success of liver-directed viral gene therapy. In parallel, additional gene therapy strategies are rapidly emerging to overcome some inherent AAV limitations, such as the non-persistence of the episomal transgene in the rapidly growing liver and immune response. Viral integrating vectors such as in vivo lentiviral gene therapy and non-viral vectors such as lipid nanoparticles encapsulating mRNA (LNP-mRNA) are rapidly being developed, currently at the preclinical and clinical stages, respectively.

View Article and Find Full Text PDF

Comprehensive genome-wide studies are needed to assess the consequences of adeno-associated virus (AAV) vector-mediated gene editing. We evaluated CRISPR-Cas-mediated on-target and off-target effects and examined the integration of the AAV vectors employed to deliver the CRISPR-Cas components to neonatal mice livers. The guide RNA (gRNA) was specifically designed to target the factor IX gene (F9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!