There is much interest in developing anti-myostatin agents to reverse or prevent muscle atrophy in adults, so it is important to characterize the effects of reducing myostatin activity after normal muscle development. For assessment of the effect of loss of myostatin signaling on gene expression in muscle, RNA from mice with postdevelopmental myostatin knockout was analyzed with oligonucleotide microarrays. Myostatin was undetectable in muscle within 2 wk after Cre recombinase activation in 4-month-old male mice with floxed myostatin genes. Three months after myostatin depletion, muscle mass had increased 26% (vs. 2% after induction of Cre activity in mice with normal myostatin genes), at which time the expression of several hundred genes differed in knockout and control mice at nominal P < 0.01. In contrast to previously reported effects of constitutive myostatin knockout, postdevelopmental knockout did not downregulate expression of genes encoding slow isoforms of contractile proteins or genes encoding proteins involved in energy metabolism. Several collagen genes were expressed at 20-50% lower levels in the myostatin-deficient muscles, which had approximately 25% less collagen than normal muscles as reflected by hydroxyproline content. Most of the other genes affected by myostatin depletion have not been previously linked to myostatin signaling. Gene set enrichment analysis suggested that Smads are not the only transcription factors with reduced activity after myostatin depletion. These data reinforce other evidence that myostatin regulates collagen production in muscle and demonstrate that many of the previously reported effects of constitutive myostatin deficiency do not occur when myostatin is knocked out in mature muscles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774565PMC
http://dx.doi.org/10.1152/physiolgenomics.00054.2009DOI Listing

Publication Analysis

Top Keywords

myostatin
15
myostatin knockout
12
myostatin depletion
12
gene expression
8
myostatin signaling
8
signaling gene
8
myostatin genes
8
expression genes
8
reported effects
8
effects constitutive
8

Similar Publications

Background: Anti-Activin Receptor Type IIA and Type IIB antibody (αActRIIA/IIB ab) is a recently developed drug class that targets the activin receptor signalling pathway. Inhibition of receptor ligands (activins, myostatin, growth differentiation factor 11, etc.) can lead to skeletal muscle hypertrophy, bone formation, and increased haematopoiesis.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Myokines: metabolic regulation in obesity and type 2 diabetes.

Life Metab

June 2024

Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis.

View Article and Find Full Text PDF

Combination of clinical frailty score and myostatin concentrations as mortality predictor in hemodialysis patients.

J Ren Nutr

January 2025

Departments of Nephrology - Dialysis - Transplantation, University of Liege, CHU de Liège, Liège, Belgium; Nephrology, Dialysis, Apheresis Unit, Centre Hospitalier Universitaire Caremeau, Nimes, University of Montpellier, Montpellier, France.

Background And Aims: Frailty is common among hemodialysis (HD) patients. Its assessment is usually based on clinical criteria. In the present work, we evaluated the interest of combining clinical frailty score and biomarkers to predict mortality of chronic HD patients.

View Article and Find Full Text PDF

Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Int J Mol Sci

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.

N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!