Background And Purpose: Minimal hepatic encephalopathy (MHE) in children is difficult to evaluate because of lack of standardized neuropsychological tests for all age ranges. The purpose of this retrospective study of children with clinically suspected MHE was to investigate relationships between brain MR spectroscopy metabolites and biochemical markers of encephalopathy as well as measures of liver disease severity.
Materials And Methods: A total of 12 children (age range, 9-19 years; 8 female) with clinically suspected MHE were studied by short TE brain MR spectroscopy on a 1.5T magnet. We estimated gray matter (GM) and white matter (WM) metabolite concentrations using "LCModel" software. Regional metabolite concentrations were examined for correlation with various parameters, including plasma ammonia, the ratio of branched-chain to aromatic amino acids (BCAA/AAA), model for end stage liver disease/pediatric end stage liver disease (MELD/PELD) and Child-Pugh scores, bilirubin, albumin, and platelet counts.
Results: Myo-inositol (mIns) levels correlated with BCAA/AAA ratios (r = 0.86; P = .002 for GM and r = 0.77; P = .01 for WM). WM choline (Cho) levels and GM mIns levels showed significant negative correlation with ammonia levels (r = -0.58; P = .04 and r = -0.65; P = .02, respectively). A positive significant correlation trend was present for GM glutamine/glutamate (Glx) and ammonia levels (r = 0.66; P = .05). There was no correlation of brain MR spectroscopy parameters and severity of liver disease.
Conclusions: Brain MR spectroscopy metabolites in children with suspected MHE show significant correlations with plasma ammonia levels and BCAA/AAA. As in adults, brain MR spectroscopy in children may be helpful in establishing a diagnosis of MHE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788940 | PMC |
http://dx.doi.org/10.3174/ajnr.A1652 | DOI Listing |
J Neurochem
January 2025
Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University Bochum, Bochum, Germany.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.
View Article and Find Full Text PDFJ Neurochem
January 2025
Core Facility Small Animal MRI, Ulm University, Ulm, Germany.
Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.
View Article and Find Full Text PDFJ Hepatol
January 2025
Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America. Electronic address:
Background & Aims: Lanifibranor is a pan-PPAR agonist that improves glucose/lipid metabolism and reverses steatohepatitis and fibrosis in adults with MASH. We tested its effect on insulin resistance at the level of different target tissues in relationship to change in intrahepatic triglyceride (IHTG) content.
Methods: This phase 2, single center, study randomized (1:1) 38 patients with T2D and MASLD to receive lanifibranor 800 mg or placebo for 24 weeks.
Brain Commun
December 2024
Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
A key question for the scientific study of consciousness is whether it is possible to identify specific features in brain activity that are uniquely linked to conscious experience. This question has important implications for the development of markers to detect covert consciousness in unresponsive patients. In this regard, many studies have focused on investigating the neural response to complex auditory regularities.
View Article and Find Full Text PDFActa Paediatr
January 2025
Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
Aim: The aim was to define reference ranges for cerebral oxygen saturation (crSO-ROOT) during immediate transition after birth in stable neonates.
Methods: In a prospective observational study, the crSO-ROOT was continuously measured in neonates during the first 15 min after birth. The neonatal sensor was placed on the head and fixed with a bandage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!