Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ.

Endocr Relat Cancer

Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles, Bat C Local C4.145, Campus Erasme, 808, Route de Lennik, B-1070 Brussels, Belgium.

Published: September 2009

DNA double-strand breaks (DSBs) are considered as one of the primary causes of cancer but their induction by hydrogen peroxide (H(2)O(2)) is still controversial. In this work, we studied whether the high levels of H(2)O(2) produced in the thyroid to oxidize iodide could induce DNA modifications. Scores of DNA damage, in terms of strand breaks, were obtained by comet assay (alkaline condition for single-strand breaks (SSBs) and neutral condition for DSBs). We demonstrated that in a rat thyroid cell line (PCCl3), non-lethal concentrations of H(2)O(2) (0.1-0.5 mmol/l) as well as irradiation (1-10 Gy) provoked a large number of SSBs ( approximately 2-3 times control DNA damage values) but also high levels of DSBs (1.2-2.3 times control DNA damage values). We confirmed the generation of DSBs in this cell line and also in human thyroid in primary culture and in pig thyroid slices by measuring phosphorylation of histone H2AX. L-Buthionine-sulfoximine, an agent that depletes cells of glutathione, decreased the threshold to observe H(2)O(2)-induced DNA damage. Moreover, we showed that DNA breaks induced by H(2)O(2) were more slowly repaired than those induced by irradiation. In conclusion, H(2)O(2) causes SSBs and DSBs in thyroid cells. DSBs are produced in amounts comparable with those observed after irradiation but with a slower repair. These data support the hypothesis that the generation of H(2)O(2) in thyroid could also play a role in mutagenesis particularly in the case of antioxidant defense deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1677/ERC-09-0020DOI Listing

Publication Analysis

Top Keywords

dna damage
16
hydrogen peroxide
8
dna
8
double-strand breaks
8
thyroid cells
8
high levels
8
times control
8
control dna
8
damage values
8
thyroid
7

Similar Publications

Chemotherapy resistance has long stood in the way of therapeutic advancement for lung cancer patients, the malignant tumor with the highest incidence and fatality rate in the world. Patients with lung adenocarcinoma (LUAD) now have a dismal prognosis due to the development of cisplatin (DDP) resistance, forcing them to use more costly second-line therapies. Therefore, overcoming resistance and enhancing patient outcomes can be achieved by comprehending the regulatory mechanisms of DDP resistance in LUAD.

View Article and Find Full Text PDF

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.

View Article and Find Full Text PDF

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants.

View Article and Find Full Text PDF

Bioeffects of Nanoplastics: DNA Damage and Mechanism.

Nano Lett

January 2025

Department of Life Sciences, Faculty of Science and Technology, Beijing Normal University- Hong Kong Baptist University United International College, No. 2000 Jintong Road, Zhuhai, Guangdong 519087, China.

Nanoplastics, as emerging contaminants, have been causing great panic, potentially affecting human health in recent years. Some studies have indicated that nanoplastics may induce severe toxicity. However, the mechanisms underlying this potential toxicity are insufficiently understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!