Purpose: To evaluate two methods of summarizing tomographic diffuse optical spectroscopic (DOS) data through region-of-interest (ROI) analysis to differentiate complete from incomplete responses in patients with locally advanced breast cancer undergoing neoadjuvant treatment and to estimate the standard deviations of these methods for power analysis of larger study designs in the future.
Materials And Methods: Subjects participating in the HIPAA-compliant imaging study, approved by the institutional review board, provided written informed consent and were compensated for their examination participation. Seven of 16 cases in women with complete study data were analyzed by using both fixed- and variable-size (full-width-at-half-maximum) ROI measures of the DOS total hemoglobin concentration (Hb(T)), blood oxygen saturation, water fraction, optical scattering amplitude, and scattering power in the ipsilateral and contralateral breasts. Postsurgical histopathologic analysis was used to categorize patients as having a complete or incomplete treatment response.
Results: Average normalized change in Hb(T) was the only DOS parameter to show significant differences (P < or = .05) in the pathologic complete response (pCR) and pathologic incomplete response (pIR) outcomes in seven patients. Mean values of the changes for fixed-size ROIs were -64.2% +/- 50.8 (standard deviation) and 16.9% +/- 38.2 for the pCR and pIR groups, respectively, and those for variable-size ROIs were -96.7% +/- 91.8, and 14.1% +/- 26.7 for the pCR and pIR groups, respectively.
Conclusion: Tomographic DOS may provide findings predictive of therapeutic response, which could lead to superior individualized patient treatment.
Supplemental Material: http://radiology.rsnajnls.org/cgi/content/full/2522081202/DC1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753781 | PMC |
http://dx.doi.org/10.1148/radiol.2522081202 | DOI Listing |
We report high-spatial-resolution 3D tomographic imaging of HO transportation in laminar jets issued from polygonal (triangular, square, and pentagonal) nozzles using laser absorption spectroscopy. An experimental platform containing a single laser source setup and motorized stages was built for 3D sampling. Numerical analysis was conducted to identify the suitable optical scheme and reconstruction algorithm.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Ophthalmology, Faculty of Medicine, Selcuk University, Konya 42130, Türkiye.
In this study, we aim to evaluate in vivo confocal microscopy (IVCM) findings of corneal stromal dystrophies (CSDs) including granular, macular and lattice corneal dystrophy that can be used for differential diagnosis and monitoring recurrences after surgical interventions. : Patients diagnosed with CSD who were followed-up in the cornea and ocular surface unit were included in this study. IVCM was performed using the Heidelberg Retina Tomograph 3, Rostock Cornea Module (Heidelberg Engineering, Germany) and anterior segment optical coherence tomography (AS-OCT) imaging was performed using the Spectralis OCT (Heidelberg Engineering, Germany).
View Article and Find Full Text PDFMed Image Anal
January 2025
Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Animals (Basel)
November 2024
Southern Counties Veterinary Specialists, Independent Vetcare (IVC) Evidensia, Forest Corner Farm, Hangersley, Ringwood BH24 3JW, UK.
Bacterial liver parenchymal infections in dogs are rarely documented, and their imaging characteristics are scarce in the veterinary literature, especially in Computed Tomography (CT). This retrospective multicentric study aimed to describe the CT characteristics of parenchymal bacterial liver infection and abscessation in dogs and compare them with the human literature. Twenty dogs met the inclusion criteria.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
We introduce phonon state tomography (PST) as a diagnostic probe of electron dynamics in solids whose phonons are optically excited by a laser pulse at initial time. Using a projected-purified matrix-product states algorithm, PST decomposes the exact correlated electron-phonon wavefunction into contributions from purely electronic states corresponding to statistically typical configurations of the optically accessible phononic response, enabling a "tomographic" reconstruction of the electronic dynamics generated by the phonons. Thus, PST may be used to diagnose electronic behavior in experiments that access only the phonon response, such as thermal diffuse X-ray and electron scattering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!