Energetics of metamorphic climax in the pickerel frog (Lithobates palustris).

Comp Biochem Physiol A Mol Integr Physiol

Department of Fisheries and Wildlife Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

Published: October 2009

Anuran metamorphosis, the transition from aquatic larvae to terrestrial juveniles, is accompanied by significant morphological, physiological, and behavioral changes. Timing of metamorphosis and final size, which can influence adult fitness, may depend on sufficient energy accumulated during the larval period to support metamorphosis. However, only two species of anurans have been examined for energetic costs of metamorphosis, Rana tigrina and Anaxyrus terrestris. Based on these species, it has been hypothesized that differences in energy expenditure are related to duration of metamorphosis. To compare energetic costs of metamorphosis among species and examine this hypothesis, we quantified the total energy required for metamorphosis of Lithobates palustris tadpoles by measuring oxygen consumption rates over the duration of metamorphic climax using closed-circuit respirometry. Total energy costs for L. palustris were positively related to tadpole mass and duration of metamorphic climax. However, larger tadpoles completed metamorphosis more efficiently because they used proportionally less total energy for metamorphic climax than smaller counterparts. Costs were intermediate to R. tigrina, a larger species with similar metamorphic duration, and A. terrestris, a smaller species with shorter metamorphic climax. The results supported the hypothesis that amphibian species with more slowly developing tadpoles, such as ranids, require more absolute energy for metamorphosis in comparison to more rapidly developing species like bufonids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2009.06.001DOI Listing

Publication Analysis

Top Keywords

metamorphic climax
20
total energy
12
metamorphosis
9
lithobates palustris
8
metamorphosis species
8
energetic costs
8
costs metamorphosis
8
duration metamorphic
8
species
7
energy
6

Similar Publications

Phenanthrene toxicity during early development of the neotropical tree frog Dendropsophus branneri.

Aquat Toxicol

January 2025

Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil. Electronic address:

Phenanthrene is considered a priority polycyclic aromatic hydrocarbon due to its ubiquitous presence in aquatic and terrestrial environments and its toxic potential. Tadpoles are sensitive ecotoxicological models that provide important information regarding effects of contaminants in amphibian species. The goal of the present study was to generate information regarding the acute and chronic toxicity of phenanthrene to the neotropical tree frog Dendropsophus branneri early life stages.

View Article and Find Full Text PDF

Chytridiomycosis disrupts metabolic responses in amphibians at metamorphic climax.

Microbes Infect

November 2024

School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; School of the Environment, University of Queensland, St Lucia, Queensland, 4067, Australia.

The fungal disease chytridiomycosis (causative agent Batrachochytrium dendrobatidis [Bd]) is a primary contributor to amphibian species declines. The morphological and physiological reorganization that occurs during amphibian metamorphosis likely increases the vulnerability of metamorphs to Bd. To address this, we exposed pro-metamorphic tadpoles of Fleay's barred frog (Mixophyes fleayi) to Bd and sampled skin and liver sections from control and exposed animals throughout metamorphosis (Gosner stages 40, 42 and 45).

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) may interact with peroxisome proliferator activated receptors (PPARs) and alter lipid homeostasis. Using , we investigated the effect of PFAS on (a) lipid homeostasis and whether this correlated to changes in body and hepatic condition; (b) the expression of hepatic genes regulated by PPAR; and (c) the hepatic lipidome. We chronically exposed tadpoles to 0.

View Article and Find Full Text PDF

Histological and gene-expression analyses of pyloric sphincter formation during stomach metamorphosis in Xenopus laevis.

Dev Biol

January 2025

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan. Electronic address:

During anuran metamorphosis from herbivorous tadpoles to carnivorous frogs, the gastrointestinal (GI) tract undergoes drastic remodeling, such as the formation of the stomach-intestine boundary and the development of the pyloric sphincter at the posterior end of the stomach. However, the morphogenetic process and molecular mechanisms of how the pyloric sphincter is formed during metamorphosis, instead of during embryogenesis as in amniotes, are largely uninvestigated. Using the African clawed frog Xenopus laevis, we histologically examined the development of the pylorus region from embryonic to froglet stages and performed spatiotemporal gene expression analyses.

View Article and Find Full Text PDF

Natural modulation of redox status throughout the ontogeny of Amazon frog Physalaemus ephippifer (Anura, Leptodactylidae).

Sci Rep

September 2024

Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil.

During their development, amphibians undergo various physiological processes that may affect their susceptibility to environmental pollutants. Naturally occurring fluctuations caused by developmental events are often overlooked in ecotoxicological studies. Our aim is to investigate how biomarkers of oxidative stress are modulated at different stages of larval development in the Amazonian amphibian species, Physalaemus ephippifer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!