A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the dynamics of a compliant piano action mechanism impacting an elastic stiff string. | LitMetric

Modeling the dynamics of a compliant piano action mechanism impacting an elastic stiff string.

J Acoust Soc Am

Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.

Published: June 2009

A realistic model of the piano hammer-string interaction must treat the action mechanism and string as a single system. In this paper an elastic stiff string model is integrated with a dynamic model of a compliant action mechanism with flexible hammer shank. Action components represented as rotating bodies interact through felt-lined interfaces for which a specialized contact model with hysteretic damping and tangential friction was developed. The motion of the hammer during string contact is governed by the dynamics of the action mechanism, thereby providing a more sophisticated hammer-string interaction than a simple transverse impact hammer model with fixed contact location. Simulations have been used to compare mechanism response for impact on the elastic string as compared to a rigid stop. Hammer head scuffing along the string and time in contact were predicted to increase, while hammer shank vibration amplitude and peak contact force were decreased. Introducing hammer-string friction decreases the duration of contact and reduces the extent of scuffing. Finally, significant differences in hammer and string motion were predicted for a highly flexible hammer shank. Initial contact time and location, length of contact period and peak force, hammer vibration amplitude, scuffing extent, and string spectral content were all influenced.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.3125343DOI Listing

Publication Analysis

Top Keywords

action mechanism
16
hammer shank
12
elastic stiff
8
string
8
stiff string
8
hammer-string interaction
8
hammer
8
flexible hammer
8
contact
8
hammer string
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!