Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A realistic model of the piano hammer-string interaction must treat the action mechanism and string as a single system. In this paper an elastic stiff string model is integrated with a dynamic model of a compliant action mechanism with flexible hammer shank. Action components represented as rotating bodies interact through felt-lined interfaces for which a specialized contact model with hysteretic damping and tangential friction was developed. The motion of the hammer during string contact is governed by the dynamics of the action mechanism, thereby providing a more sophisticated hammer-string interaction than a simple transverse impact hammer model with fixed contact location. Simulations have been used to compare mechanism response for impact on the elastic string as compared to a rigid stop. Hammer head scuffing along the string and time in contact were predicted to increase, while hammer shank vibration amplitude and peak contact force were decreased. Introducing hammer-string friction decreases the duration of contact and reduces the extent of scuffing. Finally, significant differences in hammer and string motion were predicted for a highly flexible hammer shank. Initial contact time and location, length of contact period and peak force, hammer vibration amplitude, scuffing extent, and string spectral content were all influenced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.3125343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!