This study examined 2 methodological issues that might influence the fading affect bias (FAB). The FAB occurs when people report that the affective intensity associated with unpleasant events decreases over time more than the intensity of positive events. In the experiments reported here we investigated the FAB using a between-subject design (Experiments 1a and 1b) and manipulated the order of the ratings (past and current) used to measure the FAB (Experiment 2). In each case, we observed a strong FAB effect, suggesting that it is not solely a function of the research design or the order of the intensity ratings.Thus, the FAB is a robust phenomenon that appears in many different situations.
Download full-text PDF |
Source |
---|
Molecules
January 2025
College of New Energy and Materials, China University of Petroleum, Beijing 102249, China.
Colored polymer microspheres have attracted significant attention in both academia and industry due to their unique optical properties and extensive application potential. However, achieving a uniform distribution of dyes within these microspheres remains a challenge, particularly when heavy concentrations of dye are used, as this can lead to aggregation or delamination, adversely affecting their application. Additionally, many dyes are prone to degradation or fading when exposed to light, heat, or chemicals, which compromises the long-term color stability of the microspheres.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:
Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.
View Article and Find Full Text PDFPlant Methods
January 2025
College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan.
User location has emerged as a pivotal factor in human-centered environments, driving applications like tracking, navigation, healthcare, and emergency response that align with Sustainable Development Goals (SDGs). However, accurate indoor localization remains challenging due to the limitations of GPS in indoor settings, where signal interference and reflections disrupt satellite connections. While Received Signal Strength Indicator (RSSI) methods are commonly employed, they are affected by environmental noise, multipath fading, and signal interference.
View Article and Find Full Text PDFPhys Rev E
October 2024
College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom.
In this work, we aim to unveil the general correlations between the performance of a physical reservoir computing (RC) system and the inherent nonlinear dynamics of the adopted device. Taking the metal-ferroelectric-metal (MFM) capacitor, one of the most popular candidate devices for compute-in-memory (CIM) technology, as the computational platform, we construct a nonlinear dynamical model of polarization in the ferroelectric layer. We then design the physical RC utilizing a single and/or an array of MFM capacitors by analyzing the model's stability and feasible dynamical cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!