We used computational methods to study the interaction between two key proteins in apoptosis regulation: the transcription factor NF-kappa-B (NFkappaB) and the proapoptotic protein ASPP2. The C-terminus of ASPP2 contains ankyrin repeats and SH3 domains (ASPP2(ANK-SH3)) that mediate interactions with numerous apoptosis-related proteins, including the p65 subunit of NFkappaB (NFkappaB(p65)). Using peptide-based methods, we have recently identified the interaction sites between NFkappaB(p65) and ASPP2(ANK-SH3) (Rotem et al., J Biol Chem 283, 18990-18999). Here we conducted a computational study of protein docking and molecular dynamics to obtain a structural model of the complex between the full length proteins and propose a mechanism for the interaction. We found that ASPP2(ANK-SH3) binds two sites in NFkappaB(p65), at residues 236-253 and 293-313 that contain the nuclear localization signal (NLS). These sites also mediate the binding of NFkappaB to its natural inhibitor IkappaB, which also contains ankyrin repeats. Alignment of the ankyrin repeats of ASPP2(ANK-SH3) and IkappaB revealed that both proteins share highly similar interfaces at their binding sites to NFkappaB. Protein docking of ASPP2(ANK-SH3) and NFkappaB(p65), as well as molecular dynamics simulations of the proteins, provided structural models of the complex that are energetically similar to the NFkappaB-IkappaB determined structure. Our results show that ASPP2(ANK-SH3) binds NFkappaB(p65) in a similar manner to its natural inhibitor IkappaB, suggesting a possible novel role for ASPP2 as an NFkappaB inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.22473DOI Listing

Publication Analysis

Top Keywords

ankyrin repeats
12
sites nfkappabp65
8
protein docking
8
molecular dynamics
8
aspp2ank-sh3 binds
8
natural inhibitor
8
inhibitor ikappab
8
aspp2ank-sh3
6
proteins
5
nfkappab
5

Similar Publications

DARPin-induced reactivation of p53 in HPV-positive cells.

Nat Struct Mol Biol

January 2025

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

Infection of cells with high-risk strains of the human papillomavirus (HPV) causes cancer in various types of epithelial tissue. HPV infections are responsible for ~4.5% of all cancers worldwide.

View Article and Find Full Text PDF

Background: An increasing body of evidence has linked fructose intake to colorectal cancer (CRC). African American (AA) adults consume greater quantities of fructose and are more likely to develop right-side colon cancer than European American (EA) adults.

Objective: We examined the hypothesis that fructose consumption leads to epigenomic and transcriptomic differences associated with CRC tumor biology.

View Article and Find Full Text PDF

Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.

View Article and Find Full Text PDF

Drought is a persistent and serious threat to crop yield and quality. The identification and functional characterization of drought tolerance-related genes is thus vital for efforts to support the genetic improvement of drought-tolerant crops. Barley is highly adaptable and renowned for its robust stress resistance, making it an ideal subject for efforts to explore genes related to drought tolerance.

View Article and Find Full Text PDF

DARPins as a novel tool to detect and degrade p73.

Cell Death Dis

December 2024

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.

The concept of Targeted Protein Degradation (TPD) has been introduced as an attractive alternative to the development of classical inhibitors. TPD can extend the range of proteins that can be pharmacologically targeted beyond the classical targets for small molecule inhibitors, as a binding pocket is required but its occupancy does not need to lead to inhibition. The method is based on either small molecules that simultaneously bind to a protein of interest and to a cellular E3 ligase and bring them in close proximity (molecular glue) or a bi-functional molecule synthesized from the chemical linkage of a target protein-specific small molecule and one that binds to an E3 ligase (Proteolysis Targeting Chimeras (PROTAC)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!