Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acellular biological tissues, including bovine pericardia (BP), have been proposed as natural biomaterials for tissue engineering. However, small pore size, low porosity and lack of extra cellular matrix (ECM) after native cell extraction directly restrict the seed cell adhesion, migration and proliferation and which is a vital problem for ABP's application in the tissue engineered heart valve (TEHV). In the present study, we treated acellular BP with acetic acid, which increased the scaffold pore size and porosity and conjugated RGD polypeptides to ABP scaffolds. After 10 days of culture in vitro, the human mesenchymal stem cells (hMSCs) attached the best and proliferated the fastest on RGD-modified acellular scaffolds, and the cell has grown deep into the scaffold. In contrast, a low density of cells attached to the unmodified scaffolds, with few infiltrating into the acellular tissues. These findings support the potential use of modified acellular BP as a scaffold for tissue engineered heart valves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-009-3791-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!