Background And Purpose: The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a key transcription factor regulating genes involved in adipogenesis, glucose homeostasis and cell differentiation. Moreover, PPARgamma has been demonstrated to control proliferation and apoptosis in various cancer cells. We investigated the biological effects of PPARgamma activation by the oral antidiabetic agent pioglitazone in Barrett's adenocarcinoma cells in vitro and in vivo.

Results: PPARgamma mRNA and protein were overexpressed in endoscopic biopsies of Barrett's epithelium and the human Barrett's adenocarcinoma cancer cell line OE33 as compared to normal esophagus and stomach and the esophageal squamous epithelium cancer cell line Kyse-180. PPARgamma activation by pioglitazone in OE33 cells in vitro led to reduced cell growth by induction of apoptosis. Effects of systemic PPARgamma activation by the thiazolidinedione pioglitazone on tumor cell proliferation and apoptosis were then assessed in vivo in nude mice bearing transplantable Barrett's adenocarcinomas derived from OE33 cells. Unexpectedly, enhanced growth of OE33 derived transplantable adenocarcinomas was observed in Balb/c nu/nu mice upon systemic pioglitazone treatment due to increased cell proliferation.

Conclusion: These results indicate that PPARgamma is involved in the molecular pathogenesis of Barrett's adenocarcinoma formation and growth. However, activation of PPARgamma exerts differential effects on growth of Barrett's adenocarcinoma cells in vitro and in vivo emphasizing the importance of additional cell context specific factors and systemic metabolic status for the modulation of PPARgamma action in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00535-009-0086-yDOI Listing

Publication Analysis

Top Keywords

ppargamma activation
16
barrett's adenocarcinoma
16
cells vitro
12
ppargamma
10
differential effects
8
effects ppargamma
8
activation oral
8
oral antidiabetic
8
antidiabetic agent
8
agent pioglitazone
8

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

This study is the first to explore the effects of the novel yellow pigment monascinol (Msol) from red mold rice (RMR) on reducing body fat and to compare its effects with those of monascin (MS) and ankaflavin (AK). In a high-fat diet-induced rat model, different doses of RMR fermented rice (RL, RM, RH) and purified Msol, MS, and AK were administered over an 8-week period. The results showed that all treatment groups significantly reduced body weight and fat mass.

View Article and Find Full Text PDF

fruit extract preadipocyte differentiation inhibition in 3T3-L1 cells.

J Taibah Univ Med Sci

December 2024

Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

Objective: Concerns over the increasing number of obese individuals and the associated health risks have prompted therapeutic option explorations. Similarly, this study aimed to establish fruit extract (SCFE) anti-adipogenic attributes in 3T3-L1 cells.

Methods: The polyphenolic compounds in SCFE were identified with Reverse phase-high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

In 2019, diabetes mellitus affected 9.3% of the global population and accounted for one in nine adult deaths. Plant-based antioxidants neutralize harmful free radicals, mitigate oxidative stress, and significantly prevent diabetes and its complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!