We demonstrate an all-fiber photon pair source for the critical telecom C-band. We achieve high pair generation rates in excess of 10 MHz while maintaining coincidence-to-accidental ratios (CARs) greater than 100. This is one of the brightest and lowest-noise photon pair sources ever demonstrated. We achieve the high pair rate through CW-pumped spontaneous four-wave mixing in dispersion-shifted fiber. We achieve the high CAR by cooling the fiber to 4 K to suppress the Raman generation and detecting the photons with low jitter and low dark count superconducting single-photon detectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.17.010290 | DOI Listing |
Sci Adv
January 2025
National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.
Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources.
View Article and Find Full Text PDFACS Photonics
January 2025
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106, United States.
Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.
View Article and Find Full Text PDFAn intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.
View Article and Find Full Text PDFACS Mater Au
January 2025
Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions.
View Article and Find Full Text PDFNpj Nanophoton
January 2025
Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany.
We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!