Quantum dot (QD) semiconductor saturable absorber mirrors (SESAMs) offer a larger design freedom than standard quantum well (QW) SESAMs. QD density, QD growth conditions, number of QD-layers, and post-growth annealing were optimized to independently reduce the saturation fluence and adjust the modulation depth for an antiresonant SESAM that supported for the first time passive modelocking of a vertical external-cavity surface emitting laser (VECSEL) with the same spot size on gain and absorber. The same spot size is a requirement for the modelocked integrated external-cavity surface emitting laser (MIXSEL) concept which enables wafer-scale fabrication of the ultrafast semiconductor laser. The antiresonant SESAM design has low dispersion, is less susceptible to growth errors, and is therefore very promising for short pulse generation and MIXSEL integration.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.009704DOI Listing

Publication Analysis

Top Keywords

saturation fluence
8
quantum dot
8
mixsel integration
8
antiresonant sesam
8
external-cavity surface
8
surface emitting
8
emitting laser
8
spot size
8
low saturation
4
fluence antiresonant
4

Similar Publications

Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images.

View Article and Find Full Text PDF

Corneal cross-linking.

Prog Retin Eye Res

December 2024

ELZA Institute, Webereistrasse 2, CH-8953, Dietikon, Switzerland; Laboratory for Ocular Cell Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206, Geneva, Switzerland. Electronic address:

First introduced over 20 years ago as a treatment for progressive keratoconus, the original "Dresden" corneal cross-linking (CXL) protocol involved riboflavin saturation of the stroma, followed by 30 min of 3 mW/cm-intensity ultraviolet-A (UV-A) irradiation. This procedure generates reactive oxygen species (ROS) that cross-link stromal molecules, thereby stiffening the cornea and counteracting the ectasia-induced weakening. Due to their large size, riboflavin molecules cannot readily pass through the corneal epithelial cell tight junctions; thus, epithelial debridement was performed.

View Article and Find Full Text PDF

Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions.

View Article and Find Full Text PDF

Reducing the repetition rate is one of the effective ways to increase the peak-power of the mode-locked pulses. However, for a vertical-external-cavity surface-emitting laser (VECSEL), the carrier lifetime in the nanosecond regime limits the further reduction of the pulse repetition rate, or in other words, limits the average output power of the mode-locked laser at low repetition rates, and ultimately restricts the peak-power of the pulses. This work uses a specially designed saturable Bragg reflector to start the mode-locking, and both low repetition rate and high average power are achieved simultaneously in a passively mode-locked VECSEL.

View Article and Find Full Text PDF

We demonstrate a mode-locked fluoride fiber laser operating at 2.8 µm using an InAs/GaSb superlattice (SL) semiconductor saturable absorber mirror (SESAM). Z-scan measurements show that the SL saturable absorber layer possesses off-bandgap nonlinearity near 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!