A mouse model of human ZNF198-fibroblast growth factor receptor-1 (FGFR1) stem cell leukemia lymphoma has been developed to investigate mechanisms of oncogenesis and progression. Using array-based comparative genomic hybridization, we followed disease progression after serial transplantation of ZNF198-FGFR1-transformed stem cells that give rise to a distinct myeloproliferative disorder and T-lymphoblastic leukemia. A consistent, frequently homozygous, chr14:53880459-55011545 deletion, containing the T-cell receptor alpha and delta genes, was identified in the bone marrow, spleen, and lymph nodes in all cases. The absence of cell-surface T-cell receptor alpha in tumor cells precludes CD3 recruitment, resulting in loss of a functional T-cell receptor complex, supporting the idea that prevention of maturation of CD4(+)/CD8(+) double-positive immature T cells is important in ZNF198-FGFR1 disease development. Up-regulation of the B-cell line 2, interleukin 7 receptor alpha and interleuking 2 receptor alpha prosurvival genes in these undifferentiated tumor precursor cells suggests one mechanism that allows them to escape apoptosis in the thymus. Thus, we have defined an important event in the process of ZNF198-FGFR1-induced T-cell leukemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731638 | PMC |
http://dx.doi.org/10.1182/blood-2009-03-212704 | DOI Listing |
Eur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
J Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFJ Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!