Adverse experiences early in life may sensitize specific neurocircuits to subsequent stressors. We have evaluated in maternal separation (MS) rats, an animal paradigm of early-life stress, the effects of a selective cholinergic lesion on cognitive function as well as susceptibility of cholinergic neurons to the lesion. MS rats subjected to a cholinergic lesion by administration of the immunotoxin 192 IgG-saporin, showed significant decreases in both choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity compared to control lesioned rats. Morris water maze results revealed a significant impairment in learning and memory function in MS adult rats and further cognitive deficits after the lesion. The lesion of cholinergic neurons induced a significant decrease in glucocorticoid receptor density in MS rats, accompanied by increases in CRF mRNA expression. Decreases in NGF and increases in NGF-p75NTR expression have also been found in MS rats. Our results suggest that vulnerability of basal forebrain cholinergic nerve cells might be affected by the HPA axis. The present data are discussed not only in terms of conditions that occur during ageing or Alzheimer disease, but also regarding a purported involvement of the cholinergic system in the regulation of HPA axis activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2009.05.003 | DOI Listing |
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland. Electronic address:
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay.
View Article and Find Full Text PDFNat Metab
January 2025
Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron HO signalling cascade in Drosophila that is essential for long-term memory formation.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands.
Cognitive impairment is considered to be one of the key features of Parkinson's disease (PD), ultimately resulting in PD-related dementia in approximately 80% of patients over the course of the disease. Several distinct cognitive syndromes of PD have been suggested, driven by different neurotransmitter deficiencies and thus requiring different treatment regimes. In this study, we aimed to identify characteristic brain covariance patterns that reveal how cholinergic denervation is related to PD and to cognitive impairment, focusing on four domains, including attention, executive functioning, memory, and visuospatial cognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!