Background: Neural stem cells (NSCs) are present in the adult mammalian brain and sustain life-long adult neurogenesis in the dentate gyrus of the hippocampus. In culture, fibroblast growth factor-2 (FGF-2) is sufficient to maintain the self-renewal of adult NSCs derived from the adult rat hippocampus. The underlying signalling mechanism is not fully understood.

Results: In the established adult rat NSC culture, FGF-2 promotes self-renewal by increasing proliferation and inhibiting spontaneous differentiation of adult NSCs, accompanied with activation of MAPK and PLC pathways. Using a molecular genetic approach, we demonstrate that activation of FGF receptor 1 (FGFR1), largely through two key cytoplasmic amino acid residues that are linked to MAPK and PLC activation, suffices to promote adult NSC self-renewal. The canonical MAPK, Erk1/2 activation, is both required and sufficient for the NSC expansion and anti-differentiation effects of FGF-2. In contrast, PLC activation is integral to the maintenance of adult NSC characteristics, including the full capacity for neuronal and oligodendroglial differentiation.

Conclusion: These studies reveal two amino acid residues in FGFR1 with linked downstream intracellular signal transduction pathways that are essential for maintaining adult NSC self-renewal. The findings provide novel insights into the molecular mechanism regulating adult NSC self-renewal, and pose implications for using these cells in potential therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700800PMC
http://dx.doi.org/10.1186/1756-6606-2-16DOI Listing

Publication Analysis

Top Keywords

adult nsc
16
nsc self-renewal
12
adult
11
molecular genetic
8
self-renewal adult
8
neural stem
8
stem cells
8
adult nscs
8
adult rat
8
mapk plc
8

Similar Publications

Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Background/aims: Psoriasis is a common inflammatory skin disorder following non-specific triggers. Involvement of immune system is widely accepted for pathogenesis studies have demonstrated importance of gut microbiota in pathogenesis of inflammatory skin diseases. Proton pump inhibitor (PPI) and histamine-2 receptor antagonist (H2RA) are acid-suppressive drugs widely used for acid related gastrointestinal diseases, and prolonged use has been associated with altered gut microbiota.

View Article and Find Full Text PDF

Lactate shuttling links histone lactylation to adult hippocampal neurogenesis in mice.

Dev Cell

January 2025

State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China. Electronic address:

Lactate has emerged as a central metabolic fuel and an important signaling molecule. Its availability participates in various brain functions. Although lactate homeostasis is vital for adult hippocampal neurogenesis and cognition, it is still unknown how shuttles lactate across the plasma membrane of neural stem cells (NSCs) to control their activity and neurogenic potential.

View Article and Find Full Text PDF

Understanding displacement of onboard contingents in Navy amphibious ships.

PLoS One

January 2025

Department of Information and Communications Technologies, Universidad Politécnica de Cartagena, Cartagena, Región de Murcia, Spain.

The Naval Ship Code (NSC) was enacted in 2009 to standardize regulations for NATO member naval forces, and a study commissioned by the Spanish Navy General Staff (EMA) aimed to identify the factors that influence onboard personnel's ability to move during an evacuation process. This study validated the soundness of the safety protocols implemented on navy vessels and highlighted the impact of certain characteristics of the embarked military contingent, such as body mass index, age, and seniority. It also found that such characteristics could act as distinctive factors among the embarked contingents in the evacuation of a military vessel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!