Aims: We synthesized a novel system of docetaxel-loaded, trastuzumab-functionalized nanoparticles (NPs) of biodegradable copolymers for targeted and synergistic chemotherapy.

Materials & Methods: NPs of two component biodegradable copolymers were prepared by a modified solvent extraction/evaporation method with D-alpha-tocopheryl polyethylene glycol succinate (TPGS) as emulsifier. One component copolymer is poly(lactide)-TPGS, which is of desired hydrophobic-lipophilic balance for cellular adhesion, and another is carboxyl group-terminated TPGS, which facilitates the conjugation of trastuzumab on the NP surface for targeting.

Results: In vitro investigation with SK-BR-3 breast cancer cells of HER2 overexpression showed that the trastuzumab-functionalized NPs have great advantages over nude NPs in cellular uptake and cytotoxicity.

Conclusion: Trastuzumab conjugated onto the NP surface has two functions: one is to target HER2-overexpressing cancer cells and the other is to enhance the cytotoxicity of docetaxel through synergistic effects. The trastuzumab-functionalized, docetaxel-loaded NPs have great potential for targeted chemotherapy to treat HER2-overexpressing cancer.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.09.17DOI Listing

Publication Analysis

Top Keywords

biodegradable copolymers
12
trastuzumab-functionalized nanoparticles
8
copolymers targeted
8
cancer cells
8
nps great
8
her2-overexpressing cancer
8
nps
5
trastuzumab-functionalized
4
nanoparticles biodegradable
4
targeted delivery
4

Similar Publications

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Lignin Reinforcement in Polybutylene Succinate Copolymers.

Polymers (Basel)

January 2025

Department of Forest and Fire Sciences, University of Idaho, Moscow, ID 83844-1132, USA.

This study investigated the valorization of industrial lignin for producing biodegradable polybutylene succinate (PBS)-lignin copolymers. PBS was blended with varying lignin contents (0-45 wt. %) and crosslinked/grafted using dicumyl peroxide (DCP).

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!