A biomimetic modular polymer with tough and adaptive properties.

J Am Chem Soc

Department of Chemistry, University of California, 1102 Natural Sciences 2, Irvine, California 92697-2025, USA.

Published: July 2009

Natural materials employ many elegant strategies to achieve mechanical properties required for survival under varying environmental conditions. Thus these remarkable biopolymers and nanocomposites often not only have a combination of mechanical properties such as high modulus, toughness, and elasticity, but also exhibit adaptive and stimuli-responsive properties. Inspired by skeletal muscle protein titin, we have synthesized a biomimetic modular polymer that not only closely mimics the modular multidomain structure of titin, but also manifests an exciting combination of mechanical properties, as well as adaptive properties such as self-healing and temperature-responsive shape-memory properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746198PMC
http://dx.doi.org/10.1021/ja9009666DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
biomimetic modular
8
modular polymer
8
adaptive properties
8
combination mechanical
8
properties
7
polymer tough
4
tough adaptive
4
properties natural
4
natural materials
4

Similar Publications

Eco-Friendly, Sound Absorbing Materials Based on Cellulose Acetate Electrospun Fibers/Luffa Cylindrica Composites.

Macromol Rapid Commun

December 2024

Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus.

Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.

View Article and Find Full Text PDF

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.

View Article and Find Full Text PDF

Ultra-Stiff yet Super-Elastic Graphene Aerogels by Topological Cellular Hierarchy.

Adv Mater

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Lightweight cellular materials with high stiffness and excellent recoverability are critically important in structural engineering applications, but the intrinsic conflict between these two properties presents a significant challenge. Here, a topological cellular hierarchy is presented, designed to fabricate ultra-stiff (>10 MPa modulus) yet super-elastic (>90% recoverable strain) graphene aerogels. This topological cellular hierarchy, composed of massive corrugated pores and nanowalls, is designed to carry high loads through predominantly reversible buckling within the honeycomb framework.

View Article and Find Full Text PDF

Background: Patellar fractures present challenges in treatment, with traditional methods often leading to complications such as loss of reduction and implant failure. This study aimed to compare a novel suture fixation technique with the traditional tension band method using finite element analysis.

Methods: CT images of a healthy 35-year-old male were used to construct 3D patellar models.

View Article and Find Full Text PDF

Measuring the biomechanical properties of cell-derived fibronectin fibrils.

Biomech Model Mechanobiol

December 2024

Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.

Embryonic development, wound healing, and organogenesis all require assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils. FN fibrils mediate cell migration, force generation, angiogenic sprouting, and collagen deposition. While the critical role of FN fibrils has long been appreciated, we still have an extremely poor understanding of their mechanical properties and how these mechanical properties facilitate cellular responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!