A catalyst support with spatially-connected small pores and large pores, as a distinct bimodal pore structure, has been developed, which has excellent advantages in solid-catalysis reactions because the large pores provide pathways for rapid molecular transportation and the small pores serve a large area of active surface. The obtained ZrO2-SiO2 bimodal support loaded with cobalt was applied in slurry-phase Fischer-Tropsch synthesis (FTS). The bimodal catalyst presented the best reaction performance in slurry-phase FTS as higher reaction rate and lower methane selectivity, because the spatially promotional effect of bimodal structure and the chemically promotional effect of the porous zirconia were available at the same time inside the large pores of original silica gel.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2009.ns81DOI Listing

Publication Analysis

Top Keywords

large pores
12
bimodal pore
8
small pores
8
bimodal
5
pores
5
design determination
4
determination bimodal
4
pore catalyst
4
catalyst structure
4
structure hetero
4

Similar Publications

Clarifying the pore-throat size and pore size distribution of tight sandstone reservoirs, quantitatively characterizing the heterogeneity of pore-throat structures, is crucial for evaluating reservoir effectiveness and predicting productivity. Through a series of rock physics experiments including gas measurement of porosity and permeability, casting thin sections, scanning electron microscopy, and high-pressure mercury injection, the quality of reservoir properties and microscopic pore-throat structure characteristics were systematically studied. Combined with fractal geometry theory, the effects of different pore throat types, geometric shapes and scale sizes on the fractal characteristics and heterogeneity of sandstone pore throat structure are clarified.

View Article and Find Full Text PDF

First Report of Causing Heart Rot Disease of in China.

Plant Dis

December 2024

Dalian Minzu University, College of Environment and Resources, Liaohe West Road No.8, Dalian Economic and Technological Developing Zone, Dalian, China, 116600;

Styphnolobium japonicum (L.) Schott, is an ornamental species of Leguminosae, widely planted as a roadside tree in north regions of China (Kite et al. 2007).

View Article and Find Full Text PDF

High-Performance Boiling Surfaces Enabled by an Electrode-Transpose All-Electrochemical Strategy.

Adv Sci (Weinh)

December 2024

Institute of Thermal Science and Power Systems, School of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.

High-performance boiling surfaces are in great demand for efficient cooling of high-heat-flux devices. Although various micro-/nano-structured surfaces have been engineered toward higher surface wettability and wickability for enhanced boiling, the design and fabrication of surface structures for realizing both high critical heat flux (CHF) and high heat transfer coefficient (HTC) remain a key challenge. Here, a novel "electrode-transpose" all-electrochemical strategy is proposed to create superhydrophilic microporous surfaces with higher dendrites and larger pores by simply adding an electrochemical etching step prior to the multiple electrochemical deposition steps.

View Article and Find Full Text PDF

Controllable reconstruction of lignified biomass with molecular scissors to form carbon frameworks for highly stable Li metal batteries.

Chem Sci

December 2024

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China

Lithium metal batteries (LMBs) promise high-energy-density storage but face safety issues due to dendrite-induced lithium deposition, irreversible electrolyte consumption, and large volume changes, which hinder their practical applications. To address these issues, tuning lithium deposition by structuring a host for the lithium metal anode has been recognized as an efficient method. Herein, we report a supercritical water molecular scissor-controlled strategy to form a carbon framework derived from biomass wood.

View Article and Find Full Text PDF

Rapid and well-controlled degradation of polylactic acid materials with bio-based GEL(pectin/α-cellulose/SiO/CaCl).

Int J Biol Macromol

December 2024

College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:

Polylactic acid (PLA) has been a subject of considerable interest as a degradable polymer. However, the degradation process is slow and uncontrollable. In this work, controlled degradable PLA/bio-based GEL (pectin/α-cellulose/SiO/CaCl) hydrophilic plasticizer composite material was successfully prepared by solution blending process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!