Palytoxin (PTX), one of the most potent and chemically complex marine toxins, is predominantly found in zoanthid corals and sporadically in dinoflagellates. Its biosynthesis and metabolic pathways are largely unknown. However, the widespread occurrence of the toxin in phylogenetically distinct marine organisms is consistent with its production by microorganisms and subsequent accumulation in the food chain. To investigate a possible microbial origin, bacteria from two zoanthid corals (Palythoa caribaeorum, Zoanthus pulchellus) and one sponge (Neofibularia nolitangere) were isolated. More than 250 bacteria were screened for hemolysis using a newly developed PTX-screening assay of which 7% showed PTX-like hemolytic activity. 16S rRNA gene sequencing revealed that these bacterial isolates belonged to strains of Bacillus cereus group (n = 11) as well as the genera Brevibacterium (n = 4) and Acinetobacter (n = 2). The results indicate the presence of Na+/K+-ATPase toxins and possibly PTX in hemolytic bacteria from P. caribaeorum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-009-9353-4 | DOI Listing |
Gut Microbes
December 2025
Univ Rouen Normandie, INSERM, Normandie Univ, ADEN, UMR 1073 Nutrition, Inflammation and Microbiota-Gut-Brain axis, Rouen, France.
Gut bacteria play key roles in intestinal physiology, via the secretion of diversified bacterial effectors. Many of these effectors remodel the host proteome, either by altering transcription or by regulating protein post-translational modifications. SUMOylation, a ubiquitin-like post-translational modification playing key roles in intestinal physiology, is a target of gut bacteria.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
Cattle and other domestic ruminants are the primary reservoirs of O157 and non-O157 Shiga toxin-producing (STEC). Living in areas with high ruminant density has been associated with excess risk of infection, which could be due to both direct ruminant contact and residual environmental risk, but the role of each is unclear. We investigated whether there is any meaningful risk to individuals living in ruminant-dense areas if they do not have direct contact with ruminants.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey.
In this study designed to isolate lactic acid bacteria (LAB) with bacteriocin production potential, white cheese samples were collected from different provinces of Turkey and isolation was carried out. A series of experiments were carried out for the main purpose and the actual bacteriocin producers were identified by detecting the genes encoding this bacteriocin. The experiments carried out in this direction were initially carried out with 20 isolates and as a result of various experiments, the number of isolates was reduced to 8 and the study was continued with 8 isolates.
View Article and Find Full Text PDFNat Commun
January 2025
Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!