A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Size-mediated adaptive foraging: a host-selection strategy for insect parasitoids. | LitMetric

Size-mediated adaptive foraging: a host-selection strategy for insect parasitoids.

Oecologia

Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.

Published: August 2009

Foraging models are useful tools for generating predictions on predator-prey interactions, such as habitat or diet choice. However, the majority of studies attempting to explain adaptive behaviour using optimality criteria have assumed that there is no trait (e.g. size) variation among individual consumers or their prey. Hymenopteran parasitoids that attack the free-living stages of their host are an ideal system for studying the influence of body size on host selection because of the wide range of adult parasitoid sizes coupled with the defensive capabilities of their hosts. We report here our application of an experimentally parameterized host selection model to investigate the influence of parasitoid body size on the range of acceptable host instar classes. Using a demographic model, we compared the efficiency of parasitoids using an optimal host selection strategy against parasitoids using an indiscriminate host selection strategy over a range of different parasitoid body sizes. Net fitness accrual of parasitoids and the impact of host instar selection on aphid recruitment were assessed on different stage-structured aphid populations. Our results demonstrate that optimal host selection allows larger parasitoids to utilize a wider range of hosts. However, smaller parasitoids receive the greatest benefits from selecting hosts optimally by utilizing a restricted range of small, poorly defended hosts when they are abundant. We argue that the correlation between flexible host selection behaviour and adult body size may be a general phenomenon that applies to the majority of hymenopteran parasitoids that attack free-living, well-defended hosts. The potential of within-generation behavioural interactions to impact between-generation dynamics in host-parasitoid populations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-009-1381-2DOI Listing

Publication Analysis

Top Keywords

host selection
24
body size
12
host
9
parasitoids
8
hymenopteran parasitoids
8
parasitoids attack
8
attack free-living
8
parasitoid body
8
host instar
8
optimal host
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!