An approach to the synthesis of pseudo-oligosaccharides based on the cross-metathesis reaction between distinct sugar-olefins, followed by intramolecular cyclization of the obtained heterodimer, is presented. In particular, the relative efficiency of two alternative approaches, the straightforward cross-metathesis reaction and the two-step procedure (self-metathesis followed by cross-metathesis), was explored and compared for diverse sugar-olefin substrates. Some representative examples of intramolecular cyclization using iodine as an electrophilic promoter, are also reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b822989a | DOI Listing |
Chem Sci
January 2025
Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium
Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
CSIR National Chemical Laboratory, Polymer Science and Engineering Division, INDIA.
Synthesis of value-added products from post-consumer waste polyolefins is fascinating as well as challenging. Here we report ruthenium-catalyzed up-cycling of the polyethylene to long-chain alkene derivatives. The developed methodology mainly involves two steps i.
View Article and Find Full Text PDFACS Omega
December 2024
Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.
A Hoveyda-Grubbs (HG)-type olefin metathesis complex with a selenoether moiety at the terminus of phenoxy moiety was synthesized. The complex showed direct selenium-atom coordination to the ruthenium center, resulting in higher thermodynamic stability compared with the parent HG catalyst. The selenium atom binding enhanced the tolerance to protic solvent molecules in ring-closing metathesis of -tosyldiallylamide and diethyl diallylmalonate, and also in the cross metathesis between 3-butenylbenzoate and methyl acrylate.
View Article and Find Full Text PDFJ Nat Prod
December 2024
Department of Chemistry, University of Kalyani, Kalyani 741235 West Bengal, India.
A concise synthetic route to an epimer of the recently isolated biologically active cyclic tetrapeptide koshidacin B has been developed, which featured a late-stage functionalization of a macrocyclic scaffold through a cross metathesis reaction. The synthetic 9--koshidacin B showed marginal differences in spectroscopic behavior with that of the natural product but exhibited conformational preferences similar to those reported for analogous substrate chlamydocin. Moreover, it exhibited a useful level of selective inhibition of biologically relevant enzyme histone deacetylase 1 with an IC value of 0.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland.
Methyltrioxorhenium (MTO) supported on AlO or SiO-AlO is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C-H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!