We describe the application of cavity ring-down spectroscopy (CRDS) to the detection of trace levels of ethylene in ambient air in a cold storage room of a fruit packing facility over a several month period. We compare these results with those obtained using gas chromatography (GC), the current gold standard for trace ethylene measurements in post-harvest applications. The CRDS instrument provided real-time feedback to the facility, to optimize the types of fruit stored together, and the amount of room ventilation needed to maintain sub-10 ppb ethylene levels for kiwi fruit storage. Our CRDS instrument achieved a detection limit of two parts-per-billion volume (ppbv) in 4.4 minutes of measurement time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.14.001673 | DOI Listing |
ACS Earth Space Chem
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Naturally occurring bedded salt deposits are considered robust for the permanent disposal of heat-generating nuclear waste due to their unique physical and geological properties. The Brine Availability Test in Salt (BATS) is a US-DOE Office of Nuclear Energy funded project that uses heated borehole experiments underground (∼655 meters depth) at the Waste Isolation Pilot Plant (WIPP) in the bedded salt deposits of the Salado Formation to investigate the capacity for safe disposal of high-level, heat generating nuclear waste in salt. Uncertainties associated with brine mobility near heat-generating waste motivates the need to characterize the processes and sources of brine in salt deposits.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark. Electronic address:
We have recorded the gas phase spectrum of isoprene at room temperature from the mid-infrared range and into the visible range (600 cm to 17050 cm). Absorption spectra were obtained by Fourier transform infrared, conventional dispersion ultraviolet-visible-near-infrared and cavity ring-down spectroscopy to cover the entire range with a resolution comparable to that of the instruments on the James Webb Space Telescope. We have assigned the CH-stretching fundamental and overtone bands corresponding to the Δv=1-6 transitions based on anharmonic vibrational calculations using normal mode and local mode models, for the lower- and higher-energy regions, respectively.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Earth Sciences, Geological Institute, , ETH Zurich, Zurich, Switzerland.
Cavity ring-down spectroscopy (CRDS) is rapidly becoming an invaluable tool to measure hydrogen (δ²H) and oxygen (δO) isotopic compositions in water, yet the long-term accuracy and precision of this technique remain relatively underreported. Here, we critically evaluate one-year performance of CRDS δ²H and δO measurements at ETH Zurich, focusing on high throughput (~200 samples per week) while maintaining required precision and accuracy for diverse scientific investigations. We detail a comprehensive methodological and calibration strategy to optimize CRDS reliability for continuous, high-throughput analysis using Picarro's "Express" mode, an area not extensively explored previously.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, King's Buildings, Edinburgh EH9 3FJ, Scotland, U.K.
Identification of the molecular carriers of diffuse interstellar bands (DIBs) requires gas phase electronic spectra of suitable candidate structures. Recording the spectra of these in the laboratory is challenging because they include large, carbon-rich molecules, many of which are likely to be ionic. The electronic spectra of ions are often obtained using action spectroscopy methods, which can induce small perturbations to the absorption characteristics and hinder comparison with astronomical observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!