We use experimental search space mapping to examine the problem of selective nonlinear excitation with binary phase shaped femtosecond laser pulses. The search space maps represent a graphical view of all the possible solutions to the selective nonlinear excitation problem along with their experimental degrees of success. Using the information learned from these maps, we generate narrow lines with low background in second harmonic generation and stimulated Raman scattering spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.010882DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
8
laser pulses
8
search space
8
selective nonlinear
8
nonlinear excitation
8
spectral phase
4
phase optimization
4
optimization femtosecond
4
pulses narrow-band
4
narrow-band low-background
4

Similar Publications

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown.

ACS Appl Mater Interfaces

January 2025

Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.

View Article and Find Full Text PDF

There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the accuracy and quality of healing of main corneal incisions in femtosecond laser procedures in cataract surgery.

Methods: It was a prospective, non-randomized, investigator-masked study. A total of 37 eyes of 37 patients with indication for cataract surgery were separated into two groups in this prospective, nonrandomized study: Femto group, with incisions automated by femtosecond laser (18 eyes), and Phaco group, with incisions made using a keratome (19 eyes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!