We experimentally demonstrate, for the first time to our knowledge, a phase-sensitive amplifier based on frequency nondegenerate parametric amplification in optical fiber, where the input signal-idler pair is prepared all-optically. Using two fiber-optic parametric amplifier sections separated by a fiber-based wavelength-dependent phase shifter, we observe and investigate phase-sensitive gain profile in the 1550 nm region both experimentally and theoretically. The realized scheme automatically generates gain-defining phase that is environmentally stable, making it advantageous for building phase-sensitive transmission links.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.010483DOI Listing

Publication Analysis

Top Keywords

frequency nondegenerate
8
fiber-optic parametric
8
parametric amplifier
8
gain characteristics
4
characteristics frequency
4
phase-sensitive
4
nondegenerate phase-sensitive
4
phase-sensitive fiber-optic
4
amplifier phase
4
phase self-stabilized
4

Similar Publications

Article Synopsis
  • * This study demonstrates polarization engineering of biphotons using quasi-bound states in the continuum (qBIC) resonances in GaAs metasurfaces, enhancing biphoton generation.
  • * The research shows that the qBIC mode and symmetry of meta-atoms can be adjusted to control single-photon and two-photon polarization states, paving the way for advancements in generating quantum light for future technologies.
View Article and Find Full Text PDF

Squeezing light in an optomechanical system involves reducing quantum noise in one of the light's quadratures through the interaction between optical and mechanical modes. However, achieving successful implementation requires careful control of experimental parameters, which can be challenging. Here, we investigate a two-mode squeezed light transfer from optical to mechanical modes induced by a non-degenerate optical parametric amplifier (OPA).

View Article and Find Full Text PDF

Nonadiabatic quantum dynamics are carried out to illustrate the photoionized spectrum of the cyanopropyne (CH3-C≡C-C≡N) as reported in recent experimental measurements [Lamarre et al., J. Mol.

View Article and Find Full Text PDF

Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores.

J Phys Chem A

September 2024

Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada.

Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ). The absorbed photons either have equivalent (ω = ω) or different frequencies (ω ≠ ω), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA.

View Article and Find Full Text PDF

The emerging moiré superstructure of twisted transition metal dichalcogenides (TMDs) leads to various correlated electronic and optical properties compared to those of twisted bilayer graphene. In such a versatile architecture, phonons can also be renormalized and evolve due to atomic reconstruction, which, in turn, depends on the twist angle. However, observing this reconstruction and its relationship to phonon behavior with conventional, cost-effective imaging methods remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!