In this paper we present an all-optical approach allowing the realization of logic gates and other building blocks of a processing unit. The modules have dimensions of only few microns, operation rate of tens of Tera Hertz, low power consumption and high energetic efficiency. The operation principle is based upon construction of unconventional wave guiding nano-photonic structures which do not include non-linear materials or interactions. The devices developed and presented in this paper include logic diffractive phase detector, generalized diffractive phase detector, logic gates as AND, OR and NOT, amplitude modulator and analog adder/subtractor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.010272 | DOI Listing |
ACS Omega
December 2024
Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai 600014, India.
Four dual-responsive probe molecules 1,5-bis(thiophene-2-carbaldehyde)carbohydrazone (R1), 1,5-bis(thiophene-2-carbaldehyde)thiocarbohydrazone (R2), 1,5-bis(indole-3-carbaldehyde)carbohydrazone (R3), and 1,5-bis(indole-3-carbaldehyde)thiocarbohydrazone (R4) were synthesized, characterized, and investigated for their sensing efficacy. The initial sensing behavior of the probes was tested by colorimetric signaling, followed by spectral and theoretical techniques, which supported the dual-sensing ability of the selected inorganic ions. The probes exhibited highly selective optical recognition for Cu/Fe cations and F/ClO anions compared to the tested cations and anions.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, GA, USA.
The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Inria Paris, Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France.
Given some group G of logical gates, for instance the Clifford group, what are the quantum encodings for which these logical gates can be implemented by simple physical operations, described by some physical representation of G? We study this question by constructing a general form of such encoding maps. For instance, we recover that the ⟦5,1,3⟧ and Steane codes admit transversal implementations of the binary tetrahedral and binary octahedral groups, respectively. For bosonic encodings, we show how to obtain the GKP and cat qudit encodings by considering the appropriate groups, and essentially the simplest physical implementations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates [Bluvstein et al., Nature (London) 626, 58 (2024)NATUAS0028-083610.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!