Chlamydia trachomatis is a significant human pathogen with potentially severe disease sequelae in the genital tract, including infertility. A successful vaccine will need to effectively target immunity to the genital mucosa. Intranasal immunisation with cholera toxin (CT) can target immunity to the genital tract, but has the potential to cause neurological side effects. CTA1-DD is a non-toxic potent mucosal adjuvant which combines the enzymatic properties of CT, with a B cell targeting moiety. Here, we demonstrate that intranasal immunisation with CTA1-DD and chlamydial Major Outer Membrane Protein (MOMP) results in the induction of neutralising systemic and mucosal antibodies, and reduces the level of chlamydial shedding following intravaginal challenge with Chlamydia muridarum. Thus, CTA1-DD is an effective adjuvant for vaccine development against Chlamydia trachomatis, and possibly also a range of other genital pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jri.2009.04.002 | DOI Listing |
PLoS One
December 2024
Research Organization for Health, National Research and Innovation (BRIN), Cibinong, Indonesia.
Developing intranasal vaccines against pandemics and devastating airborne infectious diseases is imperative. The superiority of intranasal vaccines over injectable systemic vaccines is evident, but developing effective intranasal vaccines presents significant challenges. Fusing a protein antigen with the catalytic domain of cholera toxin (CTA1) and the two-domain D of staphylococcal protein A (DD) has significant potential for intranasal vaccines.
View Article and Find Full Text PDFVaccines (Basel)
February 2022
College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China.
African Swine Fever Virus (ASFV) has spread worldwide, and the lack of vaccines severely negatively impacts the pig industry. In this study, the p14.5 protein encoded by ASFV was used as the antigen, and the p14.
View Article and Find Full Text PDFSci Rep
September 2021
NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.
Human respiratory syncytial virus (hRSV) infection is a major pediatric health concern worldwide. Despite more than half a century of efforts, there is still no commercially available vaccine. In this study, we constructed and purified the recombinant protein CTA1-DD-RBF composed of a CTA1-DD mucosal adjuvant and prefusion F protein (RBF) using Escherichia coli BL21 cells.
View Article and Find Full Text PDFMucosal Immunol
March 2021
Department of Microbiology and Immunology, Institute of Biomedicine, Mucosal Immunobiology and Vaccine Center (MIVAC), University of Gothenburg, 405 30, Gothenburg, Sweden.
This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone.
View Article and Find Full Text PDFInt J Pharm
May 2020
Inserm, LIRIC - UMR 995, F-59 000 Lille, France; University of Lille, LIRIC - UMR 995, F-59 000 Lille, France; CHRU of Lille, LIRIC - UMR 995, F-59 000 Lille, France; University of Artois, 62300 Lens, France.
Influenza vaccines administered intramuscularly exhibit poor mucosal immune responses in the respiratory tract which is the prime site of the infection. Intranasal vaccination is a potential route for vaccine delivery which has been demonstrated effective in inducing protective immune responses in both systemic and mucosal compartments. For this purpose, nanoparticles have been used as antigen delivery systems to improve antigen capture by immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!