Role of the olfactory receptor neurons in the direct transport of inhaled uranium to the rat brain.

Toxicol Lett

Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie Expérimentale, IRSN/DRPH/SRBE/LRTOX, Site du Tricastin, B.P. 166, 26702 Pierrelatte Cedex, France.

Published: October 2009

Uranium presents numerous industrial and military uses and one of the most important risks of contamination is dust inhalation. In contrast to the other modes of contamination, the inhaled uranium has been proposed to enter the brain not only by the common route of all modes of exposure, the blood pathway, but also by a specific inhalation exposure route, the olfactory pathway. To test whether the inhaled uranium enter the brain directly from the nasal cavity, male Sprague-Dawley rats were exposed to both inhaled and intraperitoneally injected uranium using the (236)U and (233)U, respectively, as tracers. The results showed a specific frontal brain accumulation of the inhaled uranium which is not observed with the injected uranium. Furthermore, the inhaled uranium is higher than the injected uranium in the olfactory bulbs (OB) and tubercles, in the frontal cortex and in the hypothalamus. In contrast, the other cerebral areas (cortex, hippocampus, cerebellum and brain residue) did not show any preferential accumulation of inhaled or injected uranium. These results mean that inhaled uranium enters the brain via a direct transfer from the nasal turbinates to the OB in addition to the systemic pathway. The uranium transfer from the nasal turbinates to the OB is lower in animals showing a reduced level of olfactory receptor neurons (ORN) induced by an olfactory epithelium lesion prior to the uranium inhalation exposure. These results give prominence to a role of the ORN in the direct transfer of the uranium from the nasal cavity to the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2009.05.022DOI Listing

Publication Analysis

Top Keywords

inhaled uranium
24
injected uranium
16
uranium
14
olfactory receptor
8
receptor neurons
8
inhaled
8
enter brain
8
inhalation exposure
8
nasal cavity
8
accumulation inhaled
8

Similar Publications

Inhalation of aerosolized uranium is recognized as a principal mode of exposure, posing significant risks of damage to the lungs, kidneys, and other vital organs. To enhance nuclide elimination from the body, chelating agents are employed; however, single-component chelators often exhibit limited spectral activity and low effectiveness, resulting in toxicologically relevant concentrations. We have developed a composite chelating agent composed of 3,4,3-Li(1,2-HOPO), DFP, and HEDP in optimized ratios, demonstrating marked improvements in eliminating inhaled uranium.

View Article and Find Full Text PDF

Health Implications of Depleted Uranium: An Update.

J Appl Toxicol

November 2024

Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China.

Depleted uranium (DU), as a heavy metal material extensively utilized in the industrial sector, poses potential health risks to humans through various exposure pathways, including inhalation, ingestion, and dermal contact. To comprehensively understand the toxicological hazards of DU, this study conducted a literature search in the Web of Science Core Collection database using "DU" and "toxicity" as keywords, covering the period from January 2000 to December 2023. A total of 65 papers related to human, animal, or cellular studies on DU were included.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate the protective effect of soybean extract (SE) against uranium-induced lung injury in rats.

Materials And Methods: A rat lung injury model was established through nebulized inhalation of uranyl nitrate. Pretreatment with SE or sterile water (control group) by gavage for seven days before uranium exposure and until the experiment endpoints.

View Article and Find Full Text PDF

For the first time, different pollution indices and a receptor model have been used to quantify eco-environmental and health risk assessments as well as identify the sources of potentially toxic elements in soil along the Barapukuria Coal Mine (BCM). Individual indices include enrichment and contamination factors showing the soil samples are moderately to highly contaminated by arsenic, cobalt, chromium, copper, lead, and zinc and heavily contaminated by sulfur. According to the geo-accumulation index, there is significant pollution with arsenic (1.

View Article and Find Full Text PDF

Overview of radon gas in groundwater around the world: Health effects and treatment technologies.

J Environ Manage

September 2024

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar. Electronic address:

The natural radioactive decay of uranium in rocks and soils gives rise to the presence of radon in groundwater. The existence of radon in groundwater at activity levels way higher than the reference limits set by US-EPA and WHO was widely covered in literature. The exposure to elevated levels of radon in ground and drinking water have been reported in literature to cause adverse health impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!