Cellulosome complexes comprise an intercalated set of multimodular dockerin-containing enzymatic subunits connected to cohesin-containing nonenzymatic subunits called scaffoldins. The adjoining modules in each cellulosomal subunit are interconnected by a variety of linker segments of different lengths and composition. The exact role of the cellulosomal linkers has yet to be described, although it is assumed that they contribute to the architecture and action of the cellulosome by providing the protein subunits with flexibility and by providing spacers between the enzymatic modules that could enhance interactions with the cellulose substrate. Here we present four crystal structures of Acetivibrio cellulolyticus cellulosomal type II cohesins with linker extensions. Two of the structures represent two different crystal forms (trigonal and orthorhombic) of the same N-terminal cohesin module (CohB1) together with its full (6-residue) native C-terminal linker, derived from scaffoldin B. The other two structures belong to the adjacent (second) cohesin module (CohB2), each of which was crystallized with the same 6-residue linker segment, but now positioned at the N-terminus and with either a truncated (5-residue) or a full-length (45-residue) C-terminal linker, respectively. Comparison between the two CohB1 structures revealed significant differences in the conformation of their equivalent C-terminal linker segment. In one crystal form a helical conformation was observed, as opposed to an extended conformation in the other. The CohB2 structures also displayed diverse conformations in their linker segments. In these structures, different linker conformations were observed in the individual molecules within the asymmetric unit of each structure. This conformational diversity implies that the linkers may adopt alternative conformations in their natural environment, consistent with varying environmental conditions. The findings suggest that linkers can play an important role in the assembly, dynamics and function of the cellulosomal components.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2009.06.006DOI Listing

Publication Analysis

Top Keywords

c-terminal linker
12
crystal structures
8
acetivibrio cellulolyticus
8
linker
8
linker segments
8
cohesin module
8
linker segment
8
structures
7
cellulosomal
5
intermodular linker
4

Similar Publications

Hydrodynamic characterization of the FtsZ protein from Escherichia coli demonstrates the presence of linear and lateral trimers.

Anal Biochem

January 2025

Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.

FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.

View Article and Find Full Text PDF

Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.

View Article and Find Full Text PDF
Article Synopsis
  • Protein/protein interactions (PPI) are important for brain functions, but their use as drug targets for brain disorders is not fully explored.
  • A small molecule called compound 1028 has been identified that targets the FGF14/Na1.6 PPI and affects the channel's activity, resulting in increased excitability of neurons.
  • Administering compound 1028 can enhance motivation under challenging conditions, and its effects are linked to changes in dopamine levels in the brain, suggesting a new way to impact behaviors related to neuropsychiatric disorders.
View Article and Find Full Text PDF

Characterization of VldE (Spr1875), a Pneumococcal Two-State l,d-Endopeptidase with a Four-Zinc Cluster in the Active Site.

ACS Catal

December 2024

Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.

Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.

View Article and Find Full Text PDF

The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!