Cellulosome complexes comprise an intercalated set of multimodular dockerin-containing enzymatic subunits connected to cohesin-containing nonenzymatic subunits called scaffoldins. The adjoining modules in each cellulosomal subunit are interconnected by a variety of linker segments of different lengths and composition. The exact role of the cellulosomal linkers has yet to be described, although it is assumed that they contribute to the architecture and action of the cellulosome by providing the protein subunits with flexibility and by providing spacers between the enzymatic modules that could enhance interactions with the cellulose substrate. Here we present four crystal structures of Acetivibrio cellulolyticus cellulosomal type II cohesins with linker extensions. Two of the structures represent two different crystal forms (trigonal and orthorhombic) of the same N-terminal cohesin module (CohB1) together with its full (6-residue) native C-terminal linker, derived from scaffoldin B. The other two structures belong to the adjacent (second) cohesin module (CohB2), each of which was crystallized with the same 6-residue linker segment, but now positioned at the N-terminus and with either a truncated (5-residue) or a full-length (45-residue) C-terminal linker, respectively. Comparison between the two CohB1 structures revealed significant differences in the conformation of their equivalent C-terminal linker segment. In one crystal form a helical conformation was observed, as opposed to an extended conformation in the other. The CohB2 structures also displayed diverse conformations in their linker segments. In these structures, different linker conformations were observed in the individual molecules within the asymmetric unit of each structure. This conformational diversity implies that the linkers may adopt alternative conformations in their natural environment, consistent with varying environmental conditions. The findings suggest that linkers can play an important role in the assembly, dynamics and function of the cellulosomal components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2009.06.006 | DOI Listing |
Anal Biochem
January 2025
Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.
FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China.
Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
ACS Catal
December 2024
Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.
Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.
View Article and Find Full Text PDFMol Biol Cell
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!