Analogues of parthenin were synthesized by substitutions at different reaction centres to establish a structure-activity relationship (SAR). Some of the molecules have displayed significant cytotoxicity in human cervical carcinoma (HeLa) and human myeloid leukemia (HL-60) cells. A few of the compounds also induced apoptosis in HL-60 cells measured in terms of sub-Go/G1 DNA fraction. Also one of the lead molecules has been shown to be the inhibitor of both telomerase and topoisomerase-II.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.05.089DOI Listing

Publication Analysis

Top Keywords

structure-activity relationship
8
relationship sar
8
hl-60 cells
8
sar parthenin
4
parthenin analogues
4
analogues pro-apoptotic
4
pro-apoptotic activity
4
activity development
4
development novel
4
novel anti-cancer
4

Similar Publications

Declines in physical and cognitive function are common in older adults. The circulating enzyme glycosylphosphatidylinositol (GPI)-specific phospholipase D1 (GPLD1) is elevated after exercise and has been associated with improved cognitive function when administered to aged mice. The purpose of this study was to investigate the relationship between GPLD1 and both cognitive function and brain structure/function in older adults with either high or low levels of physical activity.

View Article and Find Full Text PDF

Reliable molecular property prediction is essential for various scientific endeavors and industrial applications, such as drug discovery. However, the data scarcity, combined with the highly non-linear causal relationships between physicochemical and biological properties and conventional molecular featurization schemes, complicates the development of robust molecular machine learning models. Self-supervised learning (SSL) has emerged as a popular solution, utilizing large-scale, unannotated molecular data to learn a foundational representation of chemical space that might be advantageous for downstream tasks.

View Article and Find Full Text PDF

Autophagy, a recycling process in eukaryotes, contributes to tumor growth and metastasis by alleviating cellular stress and facilitating survival and chemoresistance. The development of small molecules that selectively inhibit this pathway has proven challenging and is required to determine if autophagy inhibition can be harnessed as an effective therapeutic strategy in cancer. Compound 19 was previously identified as a selective autophagy inhibitor that targets the ATG14L-Beclin1 protein-protein interaction, which regulates the formation, localization, and function of VPS34 Complex I to initiate autophagy.

View Article and Find Full Text PDF

The norepinephrine transporter (NET) is a key regulator of noradrenergic neurotransmission and homeostasis, regulating the norepinephrine levels in the brain and peripheral tissues. hNET is a major target in neuropsychiatric disorders such as major depressive disorder, autonomic dysfunction, and attention deficit hyperactivity disorder (ADHD). The human norepinephrine transporter gene (, ) contains 504 missense single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!