Constructed soil filter (CSF) also known as Soil Biotechnology (SBT) is a process for water renovation which makes use of formulated media with culture of soil macro- and microorganisms. CSF combines sedimentation, infiltration and biodegradation processes to remove oxidizable organics and inorganics of wastewater in a single facility. Operating experience shows hydraulic loading in the range of 0.05-0.25 m(3)/m(2) h and organic loading up to 200-680 g/m(2) d. The results show increase in dissolved oxygen levels, COD removal (from 352 mg/l to 20 mg/l); BOD removal (from 211 mg/l to 7.0 mg/l); suspended solids removal (from 293 mg/l to 16 mg/l); turbidity reduction (from 145 NTU to 5.3 NTU); iron (from 5 mg/l to 0.3 mg/l); arsenic (from 500 microg/l to 10 microg/l); total coliform and fecal coliform removal (from 145 x 10(5) to 55 CFU/100 mL and 150 x 10(8) to 110 CFU/100 mL respectively), with desired pathogen levels as per WHO standards, i.e. < or =10(3) CFU/100 mL. CSF reveals advantages such as low HRT (0.5-2.0 h), low energy requirement (0.04 kWh/m(3)), no pre-treatment, high dissolved oxygen levels in the effluent, no biosludge production, no mechanical aeration and no odor, fish compatible water quality and evergreen ambience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.05.015 | DOI Listing |
Synth Syst Biotechnol
November 2024
Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China.
Guvermectin, a purine nucleoside natural product produced by the genus S, has recently been registered as a new biopesticide to boost rice yield. Despite its economic and agricultural significance, the regulatory mechanisms of guvermectin biosynthesis remain essentially unknown, hindering industrial production and widespread agricultural application. Here, we examined the roles of two LacI family regulators, and , located within and adjacent to the guvermectin biosynthesis cluster, respectively, in guvermectin production in NEAU6.
View Article and Find Full Text PDFSustainable chemical production from C gaseous substrates, such as syngas or CO/H, can be achieved through gas fermentation. In gas fermentation, acetogenic bacteria are able to utilize oxidized inorganic carbon sources as the sole carbon source and electron acceptor, while reduced inorganic species are used as the electron donor. , a model acetogen, is only capable of reducing CO to acetate and ethanol, with H as electron donor.
View Article and Find Full Text PDFFront Microbiol
January 2025
Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.
Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.
View Article and Find Full Text PDF3 Biotech
February 2025
Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India.
A protocol for micropropagation of potato ( L.) cv. Cooch Behar local retaining the fidelity of the in vitro regenerants was established for the first time.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Enology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
Manganese (Mn) is involved in plant metabolism as an enzyme cofactor. However, the role of Mn in the formation of volatile compounds in grapes has rarely been studied. To address this gap, this study explored the effect of foliar Mn application on the aroma traits of grapes and wine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!