Experimenter-delivered alcohol decreases adult hippocampal neurogenesis and hippocampal-dependent learning and memory. The present study used clinically relevant rodent models of nondependent limited access alcohol self-administration and excessive drinking during alcohol dependence (alcohol self-administration followed by intermittent exposure to alcohol vapors over several weeks) to compare alcohol-induced effects on cortical gliogenesis and hippocampal neurogenesis. Alcohol dependence, but not nondependent drinking, reduced proliferation and survival in the medial prefrontal cortex (mPFC). Apoptosis was reduced in both alcohol groups within the mPFC, which may reflect an initiation of a reparative environment following alcohol exposure as decreased proliferation was abolished after prolonged dependence. Reduced proliferation, differentiation, and neurogenesis were observed in the hippocampus of both alcohol groups, and prolonged dependence worsened the effects. Increased hippocampal apoptosis and neuronal degeneration following alcohol exposure suggest a loss in neuronal turnover and indicate that the hippocampal neurogenic niche is highly vulnerable to alcohol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742572 | PMC |
http://dx.doi.org/10.1016/j.nbd.2009.05.021 | DOI Listing |
J Surg Res
January 2025
Department of Pediatric Surgery, University of Texas Medical Branch Galveston, Galveston, Texas. Electronic address:
Introduction: Hospital-based violence intervention programs primarily target adults, raising questions about the effectiveness in preventing pediatric firearm deaths. We hypothesized that pediatric and adult firearm injury deaths are different enough to require unique intervention strategies.
Methods: Retrospective chart review was conducted of medical examiner and trauma center records of firearm-related deaths in the largest metropolitan county in Texas.
Am J Respir Crit Care Med
January 2025
AstraZeneca, BioPharmaceuticals R&D, Gaithersburg, Maryland, United States.
Inorg Chem
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland.
Hydrogen, a sustainable and environmentally friendly fuel, can be obtained through the ethanol steam reforming (ESR) process. The most promising catalysts for this process are those based on non-noble metals such as cobalt. The activity, selectivity, and stability of these catalysts strongly depend on the presence of alkali dopants.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!