Glutamate receptor-mediated neurotoxicity is a major mechanism contributing to hypoxic-ischemic brain injury (HIBI). Memantine is a safe non-competitive NMDA receptor blocker characterized by its low affinity and fast unblocking kinetics. Topiramate is an AMPA/KA receptor blocker and use-dependent sodium channel blocker with several other neuroprotective actions and little neurotoxicity. We hypothesized that the coadministration of memantine and topiramate would be highly effective to attenuate HIBI in neonatal rats. Seven-day-old Sprague-Dawley rat pups were subjected to right common carotid artery ligation and hypoxia for 2 h, and then were randomly and blindly assigned to one of four groups: vehicle, memantine, topiramate and combination group. Brain injury was evaluated by gross damage and weight deficit of the right hemisphere at 22d after hypoxic-ischemia (HI) and by neurofunctional assessment (foot-fault test) at 21d post-HI. Acute neuronal injury was also evaluated by microscopic damage grading at 72 h post-HI. Results showed the combination of memantine and topiramate improved both pathological outcome and performance significantly. The drug-induced apoptotic neurodegeneration was assessed by TUNEL staining at 48 h post-HI and the result showed no elevated apoptosis in all observed areas. The result of the experiment indicates the combination therapy is safe and highly effective to reduce brain damage after HIBI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2009.05.071 | DOI Listing |
BMC Med Educ
January 2025
Heidelberg Institute of Global Health (HIGH), University Hospital and University of Heidelberg, Heidelberg, Germany.
Background: Research shows that trauma team formation could potentially improve effectiveness of injury care in rural settings. The aim of this study was to determine the feasibility of rural trauma team training amongst medical trainees and traffic law enforcement professionals in Uganda.
Methods: Prospective multi-centre interrupted time series analysis of an interventional training based on the 4th edition of rural trauma team development course of the American College of Surgeons.
Sci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA.
Brain metastasis leads to poor outcomes and CNS injury, significantly reducing quality of life and survival rates. Advances in understanding the tumor immune microenvironment have revealed the promise of immunotherapies, which, alongside surgery, chemotherapy, and radiation, offer improved survival for some patients. However, resistance to immunotherapy remains a critical challenge.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Brown University, Providence RI, USA.
Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!