Clinical use of bioartificial livers (BAL) strongly relies on the development of bioreactors. In this study, we developed a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds and evaluated its efficacy in vitro. The bioreactor contains 65 layers of stacked flat plates, on which the nanofiber scaffolds were electrospinned for hepatocyte immobilization and aggregation. Culture medium containing pig red blood cells (RBCs) was perfused from the center to periphery, so that exchange materials are sufficient to afford enough oxygen. We determined the parameters for hepatocyte-specific function and general metabolism and also measured the oxygen consumption rate (OCR). Microscope and scanned electron microscopy observation showed a tight adhesion between cells and scaffolds. Compared with the control (bioreactors without nanofiber scaffolds), the number of adhered cells in our bioreactor was 1.59-fold; the protein-synthesis capacity of hepatocytes was 1.73-fold and urea was 2.86-fold. Moreover, the OCR of bioreactors with RBCs was about 1.91-fold that of bioreactors without RBCs. The galactosylated chitosan nanofiber scaffolds introduced into our new bioreactor greatly enhanced cell adhesion and function, and the RBCs added into the culture medium were able to afford enough oxygen for hepatocytes. Importantly, our new bioreactor showed an exciting efficiency, and it may afford the short-term support of patients with hepatic failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2009.05.020DOI Listing

Publication Analysis

Top Keywords

nanofiber scaffolds
20
galactosylated chitosan
12
chitosan nanofiber
12
multi-layer radial-flow
8
radial-flow bioreactor
8
bioreactor based
8
based galactosylated
8
culture medium
8
afford oxygen
8
bioreactors rbcs
8

Similar Publications

Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.

Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.

View Article and Find Full Text PDF

Influence of Different Solvents on the Mechanical Properties of Electrospun Scaffolds.

Materials (Basel)

January 2025

Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytinės Str. 25, 10105 Vilnius, Lithuania.

This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the produced nanofiber samples, and the nanofiber mechanical properties, yield strength, elastic modulus, and elastic elongation were calculated, and load-displacement and stress-strain dependence diagrams were compared from the obtained results.

View Article and Find Full Text PDF

Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study.

Int J Mol Sci

January 2025

Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.

Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).

View Article and Find Full Text PDF

Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.

View Article and Find Full Text PDF

Introduction: Artificial vascular scaffolds can mimic the structure of natural blood vessels and replace the damaged vessels by implanting them at the injury site to perform the corresponding functions. Electrospinning technology can perfectly combine biological signals and topographical cues to synergistically induce directed cell migration and growth.

Methods: In this study, poly (caprolactone) (PCL) nanofibers, PCL nanofibers uniformly coated with the extracellular matrix derived from endothelial cells (ECd), and bi-directional linear gradient ECd-coated PCL nanofibers were prepared by electrospinning and electrospray techniques to evaluate their effects on the proliferation and migration of Human umbilical vein endothelial cells (HUVECs) and rapid endothelialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!