Mature retinal ganglion cells (RGCs) cannot regenerate injured axons because some neurite growth inhibitors, including the C-terminal of Nogo-A (Nogo66), myelin-associated glycoprotein (MAG) and Omgp, exert their effects on neuron regeneration through the Nogo receptor (NgR). In this study, the axonal regeneration of retinal ganglion cells (RGCs) after optic nerve (ON) crush was investigated both in vivo and in vitro in NgR knockout mice. We used NgR knockout mice as the experimental group, and C57BL/6 mice as the control group. Partial ON injury was induced by using a specially designed ON clip to pinch the ON 1mm behind the mouse eyeball with 40g pressure for 9s. NgR mRNA was studied by in situ hybridization (ISH). NgR protein was studied by Western blot. Growth Associated Protein 43 (GAP-43), a plasticity protein expressed highly during axon regeneration, was studied by immunofluorescence staining on the frozen sections. RGCs were cultured and purified. The axonal growth of RGCs was calculated by a computerized image analyzer. We found that compared with the control group, the GAP-43 expression was significantly higher and the axonal growth was significantly more active at every observation time point in the experimental group. These results indicate that NgR genes play an important role in the axonal regeneration after ON injury, while knockout of NgR is effective for eliminating this inhibition and enhancing axonal regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2009.05.072 | DOI Listing |
J Am Acad Orthop Surg
November 2024
From the Department of Hand and Reconstructive Microsurgery, National University Health System, Singapore (Lee), the Department of Orthopedic Surgery (Sammarco), the Department of Neurosurgery (Spinner), Mayo Clinic, Rochester, MN, and the Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (Shin).
Painful neuromas are a complex clinical condition that results in notable disability and functional impairment after injury to a peripheral nerve. When regenerating axons lack a distal target, they form a stump neuroma. Up to 60% of neuromas are painful because of mechanical sensitivity and crosstalk between nerve fibers.
View Article and Find Full Text PDFNeuron
January 2025
Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK. Electronic address:
Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury.
View Article and Find Full Text PDFKorean J Neurotrauma
December 2024
Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective treatment available despite advancements in various therapeutic approaches. This review examines the emerging role of induced neural stem cells (iNSCs) as promising candidates for SCI treatment, highlighting their potential for direct neural regeneration and integration with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their interactions with host tissue, including modulating inflammatory responses, promoting axonal growth, and reconstructing neural circuits.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic.
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.
Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!