Pronuclear morphology seems to be an important predictive value of zygote development and integrity. In this study we want to evaluate the effect of insemination technique, male factor and oocyte cryopreservation on pronuclear morphology of zygotes derived from sibling oocytes in our Centre of Reproductive Medicine, Department of Obstetrics and Gynecology, Arcispedale S. Maria Nuova, Reggio Emilia, Italy. Subjects (n = 190) were submitted to IVF cycles with non-frozen and frozen sibling oocytes. Morphological evaluations were assessed using zygote pronuclear morphology (pronuclei, nucleoli and axis) in four groups: Group 1: 144 zygotes from 85 conventional IVF cycles with non-frozen oocytes; Group 2: 164 zygotes from 85 intracytoplasmic sperm injection (ICSI) cycles with Group 1 patients' sibling frozen oocytes; Group 3: 221 zygotes from 123 ICSI cycles with non-frozen oocytes; Group 4: 197 zygotes from 123 ICSI cycles with Group 3 patients' sibling frozen oocytes. No differences between Group 1 and Group 2 were seen. Group 3 was statistically different from Group 4 in relation to the nucleolar morphology. Oocyte cryopreservation procedure modified the nucleolar morphology of zygotes only in the presence of poor semen quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0967199409005516 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
Purpose: This study aims to create and validate a clinical model that predict the probability of blastocyst formation in IVF/ICSI-ET cycles.
Methods: This study employed a retrospective methodology, gathering data from 4961 cleavage-stage embryos that cultured in the reproductive center's of the Fourth Hospital of Hebei Medical University between June 2020 and March 2024. 3472 were in the training set and 1489 were in the validation set when it was randomly split into the training set and validation set in a 7:3 ratio.
Zygote
December 2024
Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Integrative Physiology, Tottori University Graduate School and Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
The mechanisms underlying individual differences in core body temperature (T) are unexplained by genetic factors and poorly understood. Here, we investigated whether the environmental temperature during early development affects postnatal T. Mouse embryos were cultured from pronuclear to blastocyst stage in either standard (37 °C) or high (38 °C) temperature, and the T of each grown-up adult was measured.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, Herston, QLD, Australia.
Exit from M-phase requires a precise sequence of molecular events for successful completion, with errors in the process resulting in cell death or aneuploidy, a characteristic feature of cancer and the leading cause of pregnancy failure. Exit from the second meiotic division (MII) in oocytes is a unique event triggered by sperm, involving female anaphase II as well as both male and female pronuclear formation. Very little is known about how these events involving two distinct cell types are coordinated.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
Intrinsic reproductive isolation occurs when genetic differences between populations disrupt the development of hybrid organisms, preventing gene flow and enforcing speciation. While prior studies have examined the genetic origins of hybrid incompatibility, the effects of incompatible factors on development remain poorly understood. Here, we investigate the mechanistic basis of hybrid incompatibility in nematodes by capitalizing on the ability of females to produce embryos after mating with males from several other species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!