Background: Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations.
Methods: Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe) adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS), Geographical Information Systems (GIS) and the Global Positioning System (GPS) was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height.
Results: Of a total of 3,349 aquatic habitats sampled, 321 (9.6%) contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals - often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not evident in vector populations breeding in artificial water sources away from the river.
Conclusion: The GIS-based survey strategy developed in this study provides key data on the population dynamics of An. arabiensis in Northern State. Quantitative estimates of the contributions of various habitat types and their proximity to settlements provide a basis for planning a strategy for reducing malaria risk by elimination of the vector population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698915 | PMC |
http://dx.doi.org/10.1186/1475-2875-8-123 | DOI Listing |
Parasit Vectors
December 2024
Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA.
Background: The high burden of malaria in Africa is largely due to the presence of competent and adapted Anopheles vector species. With invasive Anopheles stephensi implicated in malaria outbreaks in Africa, understanding the genomic basis of vector-parasite compatibility is essential for assessing the risk of future outbreaks due to this mosquito. Vector compatibility with P.
View Article and Find Full Text PDFJ Med Entomol
December 2024
Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso.
Malaria remains a major public health threat in Burkina Faso, as in most sub-Saharan Africa countries. Malaria control relies mainly on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying. In Burkina Faso, an escalating of insecticide resistance has been observed over the last decades.
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2024
Department of Cell and Molecular Biology, Microbiology and Immunology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden.
Mosquito larvae of the genus Anopheles develop entirely in water, frequently visiting the surface for air. The aquatic environment plays a key role in shaping their microbiota, but the connection between environmental characteristics of breeding sites and larval microbiota remains underexplored. This study focuses on Anopheles arabiensis, which inhabits the surface microlayer (SML) of breeding sites, a zone with high particle density.
View Article and Find Full Text PDFPLoS One
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania.
Background: Residual malaria transmissions in Africa may be associated with improved coverage of insecticide-treated nets, house features, and livestock husbandry. These human-land use activities may drive the ecology and behaviour of malaria vectors which sustain residual malaria transmission. This study was conducted to assess changes in the ecology and behaviour of Anopheles funestus and Anopheles arabiensis in villages with high coverage of insecticide-treated nets to guide the selection of complementary vector control strategies against residual malaria transmission.
View Article and Find Full Text PDFPLoS Biol
December 2024
Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. The outdoor-biting malaria vector Anopheles arabiensis is of increasing concern for malaria transmission because it is apparently less susceptible to many indoor control interventions, yet knowledge of its mechanisms of resistance remains limited. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of globally high resistance to pyrethroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!