Assessment of methods for prediction of human West Nile virus (WNV) disease from WNV-infected dead birds.

Emerg Themes Epidemiol

School of Public Health, University at Albany, One University Place, Rensselaer, NY 12144, USA.

Published: June 2009

Background: West Nile virus (WNV) is currently the leading cause of arboviral-associated encephalitis in the U.S., and can lead to long-term neurologic sequelae. Improvements in dead bird specimen processing time, including the availability of rapid field laboratory tests, allows reassessment of the effectiveness of using WNV-positive birds in forecasting human WNV disease.

Methods: Using New York State integrated WNV surveillance data from transmissions seasons in 2001-2003, this study determined which factors associated with WNV-positive dead birds are most closely associated with human disease. The study also addressed the 'delay' period between the distribution of the dead bird variable and the distribution of the human cases. In the last step, the study assessed the relative risk of contracting WNV disease for people who lived in counties with a 'signal' value of the predictor variable versus people who lived in counties with no 'signal' value of the predictor variable.

Results: The variable based on WNV-positive dead birds [(Positive/Tested)*(Population/Area)] was identified as the optimum variable for predicting WNV human disease at a county level. The delay period between distribution of the variable and human cases was determined to be approximately two weeks. For all 3 years combined, the risk of becoming a WNV case for people who lived in 'exposed' counties (those with levels of the positive dead bird variable above the signal value) was about 2 times higher than the risk for people who lived in 'unexposed' counties, but risk varied by year.

Conclusion: This analysis develops a new variable based on WNV-positive dead birds, [(Positive/Tested)*(Population/Area)] to be assessed in future real-time studies for forecasting the number of human cases in a county. A delay period of approximately two weeks between increases in this variable and the human case onset was identified. Several threshold 'signal' values were assessed and found effective at indicating human case risk, although specific thresholds are likely to vary by region and surveillance system differences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701944PMC
http://dx.doi.org/10.1186/1742-7622-6-4DOI Listing

Publication Analysis

Top Keywords

dead birds
16
people lived
16
dead bird
12
wnv-positive dead
12
human cases
12
human
9
west nile
8
nile virus
8
virus wnv
8
wnv disease
8

Similar Publications

During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.

View Article and Find Full Text PDF

Since late 2021, outbreaks of highly pathogenic avian influenza virus have caused a record number of mortalities in wild birds, domestic poultry, and mammals in North America. Wetlands are plausible environmental reservoirs of avian influenza virus; however, the transmission and persistence of the virus in the aquatic environment are poorly understood. To explore environmental contamination with the avian influenza virus, a large-volume concentration method for detecting infectious avian influenza virus in waterbodies was developed.

View Article and Find Full Text PDF

Since late 2021, a panzootic of highly pathogenic H5N1 avian influenza virus has driven significant morbidity and mortality in wild birds, domestic poultry, and mammals. In North America, infections in novel avian and mammalian species suggest the potential for changing ecology and establishment of new animal reservoirs. Outbreaks among domestic birds have persisted despite aggressive culling, necessitating a re-examination of how these outbreaks were sparked and maintained.

View Article and Find Full Text PDF

Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!