New wind-energy facilities and their associated power transmission lines and roads are being constructed at a rapid pace in the Great Plains of North America. Nevertheless, little is known about the possible negative effects these anthropogenic features might have on prairie birds, one of the most threatened groups in North America. We examined radiotelemetry tracking locations of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) and Greater Prairie-Chickens (T. cupido) in two locations in Oklahoma to determine whether these birds avoided or changed movement behavior near power lines and paved highways. We tracked 463 Lesser Prairie-Chickens (15,071 tracking locations) and 216 Greater Prairie-Chickens (5,750 locations) for 7 and 3 years, respectively. Individuals of both species avoided power lines by at least 100 m and Lesser Prairie-Chickens avoided one of the two highways by 100 m. Prairie-chickens crossed power lines less often than expected if birds moved randomly (p < 0.05) but did not appear to perceive highways as a movement barrier (p > 0.05). In addition, home ranges of Lesser Prairie-Chickens overlapped the power line less often than would be expected by chance placement of home ranges; this result was supported by kernel-density estimation of home ranges. It is likely that new power lines (and other tall structures such as wind turbines) will lead to avoidance of previously suitable habitat and will serve as barriers to movement. These two factors will likely increase fragmentation in an already fragmented landscape if wind energy development continues in prairie habitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1523-1739.2009.01254.x | DOI Listing |
Wildlife telemetry data may be used to answer a diverse range of questions relevant to wildlife ecology and management. One challenge to modeling telemetry data is that animal movement often varies greatly in pattern over time, and current continuous-time modeling approaches to handle such nonstationarity require bespoke and often complex models that may pose barriers to practitioner implementation. We demonstrate a novel application of treed Gaussian process (TGP) modeling, a Bayesian machine learning approach that automatically captures the nonstationarity and abrupt transitions present in animal movement.
View Article and Find Full Text PDFPLoS One
May 2024
U.S. Fish and Wildlife Service, Fort Collins, Colorado, United States of America.
Lesser prairie-chicken (Tympanuchus pallidicinctus) populations of in the Sand Sagebrush Prairie Ecoregion of southwest Kansas and southeast Colorado, USA, have declined sharply since the mid-1980s. Decreased quality and availability of habitat are believed to be the main drivers of declines. Our objective was to reconstruct broad-scale change in the ecoregion since 1985 as a potential factor in population declines.
View Article and Find Full Text PDFConservation translocations are frequently inhibited by extensive dispersal after release, which can expose animals to dispersal-related mortality or Allee effects due to a lack of nearby conspecifics. However, translocation-induced dispersals also provide opportunities to study how animals move across a novel landscape, and how their movements are influenced by landscape configuration and anthropogenic features. Translocation among populations is considered a potential conservation strategy for lesser prairie-chickens ().
View Article and Find Full Text PDFMol Phylogenet Evol
December 2023
George Miksch Sutton Avian Research Center, Bartlesville, OK 74005, USA.
Rapid divergence and subsequent reoccurring patterns of gene flow can complicate our ability to discern phylogenetic relationships among closely related species. To what degree such patterns may differ across the genome can provide an opportunity to extrapolate better how life history constraints may influence species boundaries. By exploring differences between autosomal and Z (or X) chromosomal-derived phylogenetic patterns, we can better identify factors that may limit introgression despite patterns of incomplete lineage sorting among closely related taxa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!