[Applications of chemical genetics in biomedical research].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan 250023, China.

Published: April 2009

Chemical genetics is the science which takes the small molecular compounds as tools to solve the genetics problems or to disturb/adjust normal biological process so as to find out protein functions. Because the small molecules have the diverse chemical characters and the ability to identify the target proteins, they also can be filtrated on the basis of phenotype. So the methods of chemical genetics have been applied in almost all of the researches on biology and medicine. In this paper, the methods to acquire small molecular compounds are introduced. The enormous progress achieved in the field of combinatorial chemistry, which has allowed the rapid production of a large number of chemically diverse molecules, is an important prerequisite to make chemical libraries available to academic researchers. And the applications of the compounds in early embryo development, cell differentiation, on-set and course of disease are discussed, too. The application of small molecules has an enormous impact on our understanding of cell biology. There are many examples where small molecules, in combination with genetic screens, have facilitated the dissection of complex cellular processes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chemical genetics
12
small molecules
12
small molecular
8
molecular compounds
8
small
5
[applications chemical
4
genetics
4
genetics biomedical
4
biomedical research]
4
chemical
4

Similar Publications

Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.

View Article and Find Full Text PDF

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!