Heterosynaptic plasticity in the neocortex.

Exp Brain Res

Department of Neurophysiology, Ruhr-University Bochum, Bochum, Germany.

Published: December 2009

Ongoing learning continuously shapes the distribution of neurons' synaptic weights in a system with plastic synapses. Plasticity may change the weights of synapses that were active during the induction-homosynaptic changes, but also may change synapses not active during the induction-heterosynaptic changes. Here we will argue, that heterosynaptic and homosynaptic plasticity are complementary processes, and that heterosynaptic plasticity might accompany homosynaptic plasticity induced by typical pairing protocols. Synapses are not uniform in their susceptibility for plastic changes, but have predispositions to undergo potentiation or depression, or not to change. Predisposition is one of the factors determining the direction and magnitude of homo- and heterosynaptic changes. Heterosynaptic changes which take place according to predispositions for plasticity may provide a useful mechanism(s) for homeostasis of neurons' synaptic weights and extending the lifetime of memory traces during ongoing learning in neuronal networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781103PMC
http://dx.doi.org/10.1007/s00221-009-1859-5DOI Listing

Publication Analysis

Top Keywords

heterosynaptic plasticity
8
ongoing learning
8
neurons' synaptic
8
synaptic weights
8
synapses active
8
homosynaptic plasticity
8
heterosynaptic changes
8
heterosynaptic
5
plasticity
5
changes
5

Similar Publications

Neuromorphic and fully analog in-memory computations are promising for handling vast amounts of data with minimal energy consumption. We have synthesized and studied a series of homo-bimetallic silver purine MOFs (1D and 2D) having direct metal-metal bonding. The N7-derivatized purine ligands are designed to form bi-metallic complexes under ambient conditions, extending to a 1D or 2D metal-organic framework.

View Article and Find Full Text PDF

Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site.

View Article and Find Full Text PDF

Long-term changes of synaptic transmission can be induced by Hebbian-type homosynaptic mechanisms which require activation of both pre- and postsynapse and mediate associative learning, as well as by heterosynaptic mechanisms which do not require activation of the presynapse and are non-associative. The rules for induction of homosynaptic plasticity depend on the distance of the synapse from the soma. Does induction of heterosynaptic plasticity also depend on synaptic location? Here, we investigated heterosynaptic changes in pharmacologically isolated glutamatergic inputs arriving at either the proximal or the distal segments of the apical dendrite of layer 2/3 pyramidal neurons in rat visual cortex.

View Article and Find Full Text PDF

Input specificity of NMDA-dependent GABAergic plasticity in the hippocampus.

Sci Rep

September 2024

Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368, Wroclaw, Poland.

Article Synopsis
  • Sensory experiences lead to lasting changes in synapses, crucial for memory, but the interaction between excitatory and inhibitory synaptic changes is not fully understood.
  • This study examined how NMDA-induced plasticity affects both excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells using several experimental techniques.
  • Results revealed distinct patterns of long-term changes in inhibitory inputs, suggesting a complex relationship between excitation and inhibition, which could help maintain the balance in brain activity and influence how neurons process information.
View Article and Find Full Text PDF

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca entry through Ca1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!