To assess the toxicity of the C1 compounds methanol and formaldehyde, gene expression profiles of treated baker's yeast were analyzed using DNA microarrays. Among approximately 6,000 open reading frames (ORFs), 314 were repressed and 375 were induced in response to methanol. The gene process category "energy" comprised the greatest number of induced genes while "protein synthesis" comprised the greatest number of repressed genes. Products of genes induced by methanol were mainly integral membrane proteins or were localized to the plasma membrane. A total of 622 and 610 ORFs were induced or repressed by formaldehyde, respectively. More than one-third of the genes found to be strongly repressed by formaldehyde belonged to the "protein synthesis" functional category. Conversely, genes in the subcategory of "nitrogen, sulfur, and selenium metabolism" within "metabolism" and in the category of "cell rescue, defense, and virulence" were up-regulated by exposure to formaldehyde. Our data suggest that membrane structure is a major target of methanol toxicity, while proteins were major targets of formaldehyde toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-009-8684-yDOI Listing

Publication Analysis

Top Keywords

methanol formaldehyde
8
comprised greatest
8
greatest number
8
"protein synthesis"
8
repressed formaldehyde
8
formaldehyde
6
genes
5
toxicity
4
toxicity methanol
4
formaldehyde saccharomyces
4

Similar Publications

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

Effect of Transition Metal Variability in NNN-Pincer Complexes on Catalytic CO2 Reduction to Methanol.

Chem Asian J

December 2024

Ashoka University, Chemistry, Rajiv Gandhi Educational Hub, India, 131029, Sonipat, INDIA.

The catalytic efficiency of M-H2tpda pincer complexes (M = Mn(I), Fe(II), Co(III)) in CO2 hydrogenation, emphasizing the role of transition metal center variability have been discussed. The DFT analysis demonstrates that complexes with low αR values form weaker M-H bonds, enhancing catalyst reactivity with the elongation of M-H bond. The analysis further displays excellent catalytic performance for Mn-H2tpda (ΔE = 20.

View Article and Find Full Text PDF

We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO2 reduction under selective formation of methanol. Ag-Bi2O3 selectively reduces gaseous CO2 to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydro-genase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.

View Article and Find Full Text PDF

Unlabelled: Context-specific genome-scale model (CS-GSM) reconstruction is becoming an efficient strategy for integrating and cross-comparing experimental multi-scale data to explore the relationship between cellular genotypes, facilitating fundamental or applied research discoveries. However, the application of CS modeling for non-conventional microbes is still challenging. Here, we present a graphical user interface that integrates COBRApy, EscherPy, and RIPTiDe, Python-based tools within the BioUML platform, and streamlines the reconstruction and interrogation of the CS genome-scale metabolic frameworks via Jupyter Notebook.

View Article and Find Full Text PDF

Chalcogen bonds (ChBs) involving selenium have attracted substantial scholarly interest in past years owing to their fundamental roles in various chemical and biological fields. However, the effect of the valency state of the electron-deficient selenium atom on the characteristics of such ChBs remains unexplored. Herein, we comparatively studied the σ-hole-type Se∙∙∙O ChBs between SeF/SeF and a series of oxygen-bearing Lewis bases, including water, methanol, dimethyl ether, ethylene oxide, formaldehyde, acetaldehyde, acetone, and formic acid, using ab initio computations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!