We show that computer generated holograms, implemented with amplitude-only liquid crystal spatial light modulators, allow the synthesis of fully complex fields with high accuracy. Our main discussion considers modified amplitude holograms whose transmittance is obtained by adding an appropriate bias function to the real cosine computer hologram of the encoded signal. We first propose a bias function, given by a soft envelope of the signal modulus, which is appropriate for perfect amplitude modulators. We also consider a second bias term, given by a constant function, which results appropriate for modulators whose amplitude transmittance is coupled with a linear phase modulation. The influence of the finite pixel size of the spatial light modulator is compensated by digital pre-filtering of the encoded complex signal. The performance of the discussed amplitude CGHs is illustrated by means of numerical simulations and the experimental synthesis of high order Bessel beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.007913 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!