We demonstrate an all-optical tunable delay in fiber based on wavelength conversion, group-velocity dispersion, and wavelength reconversion. The device operates near 1550 nm and generates delays greater than 800 ps. Our delay technique has the combined advantages of continuous control of a wide range of delays from picoseconds to nanoseconds, for a wide range of signal pulse durations (ps to 10 ns), and an output signal wavelength and bandwidth that are the same as that of the input. The scheme can potentially produce fractional delays of 1000 and is applicable to both amplitude- and phase-shift keyed data.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.007872DOI Listing

Publication Analysis

Top Keywords

wavelength bandwidth
8
wavelength conversion
8
wide range
8
all-optical wavelength
4
bandwidth preserving
4
preserving pulse
4
pulse delay
4
delay based
4
based parametric
4
wavelength
4

Similar Publications

Efficient optical parametric amplification in the thin film lithium niobate waveguides.

Sci Rep

January 2025

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631, People's Republic of China.

Prominent platforms based on thin-film lithium niobate (TFLN) are superior integrated-photonics platforms for efficient optical parametric amplification (OPA), however, previously few studies have been systematically reported the gain-boosting performance of TFLN waveguides compared to bulk LN waveguides. Here, we optimize two TFLN waveguides with dispersion engineering for high-efficiency and ultra-broadband gain of OPA, then report comparative results about the efficient ultra-broadband OPA of TFLN waveguides in the case of low loss, optimized waveguide length and pump power. Note that the efficient ultra-broadband OPA of TFLN waveguides is represented by the peak gain (71.

View Article and Find Full Text PDF

In this Letter, we report an ultraflat high-power supercontinuum (SC) based on a low-loss short-length fluorotellurite fiber. A novel high-peak power dual-Raman soliton femtosecond laser is used as a pump source, which effectively extends the mid-infrared SC spectral range and enhances the flatness of the SC. Finally, we obtained a 10.

View Article and Find Full Text PDF

Fiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.

View Article and Find Full Text PDF

The control of temporal noise of the pump could add an additional degree of freedom to manipulate the spectrum of continuous-wave (CW) pumped SC generation. In this paper, we experimentally tailor the CW-pumped supercontinuum (SC) generation in a cascaded Raman random fiber laser (CRRFL) based on a 1 µm pump with tunable temporal dynamics. The pump is based on a spectrally filtered ytterbium-doped random fiber laser (YRFL) seed laser, which can be amplified to a 10 W level with the tunable temporal noise.

View Article and Find Full Text PDF

Free-space optical (FSO) communication has the advantages of large bandwidth and high security and being license-free, making it the preferred solution for addressing the "last kilometer" of information transmission. However, it is susceptible to fluctuations in the received optical power (ROP) due to atmospheric turbulence and pointing errors, resulting in the inevitable free-space optical communication transmission performance degradation. In this work, we experimentally verified the turbulence resistance of the cylindrical vector beam (CVB) over a 3 km long free-space field trial link.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!