The nonlocal polymerization-driven diffusion model (NPDD) has been shown to predict high spatial frequency cut-off in photopolymers and to accurately predict higher order grating components. We propose an extension to the NPDD model to account for the temporal response associated with polymer chain growth. An exponential response function is proposed to describe transient effects during the polymerization process. The extended model is then solved using a finite element technique and the nature of grating evolution examined in the case when illumination is stopped prior to the saturation of the grating recording process. Based on independently determined refractive index measurements we determine the temporal evolution of the refractive index modulation and the resulting diffraction efficiency using rigorous coupled wave theory. Material parameters are then extracted based on fits to experimental data for nonlinear and both ideal and non-ideal kinetic models.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.006990DOI Listing

Publication Analysis

Top Keywords

nonlocal polymerization-driven
8
polymerization-driven diffusion
8
diffusion model
8
temporal analysis
4
grating
4
analysis grating
4
grating formation
4
formation photopolymer
4
photopolymer nonlocal
4
model
4

Similar Publications

Holographic Grating Enhancement Induced by a Dual-Photo-Initiator System in PMMA Substrate Polymers.

Polymers (Basel)

December 2023

School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China.

Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl methacrylate]) substrate system, with the aim of promoting the diffusion and polymerization processes in volume holographic storage. The two-wave interference system is adopted to record a permanent grating structure in our materials.

View Article and Find Full Text PDF

This work demonstrates the grating formation of bulk nanoparticle polymer composites through an improved interference optical system under ultrafast nanoseconds exposure of a silver nanoprisms (NPs) dispersed photo-polymerizable mixture in the case of 532 nm wavelength. The polymerizable mixture is composed of phenathrenequinone (PQ) (photoinitiator) and methyl methacrylate (MMA) (monomer). The mechanism in this bulk nanoparticle polymer composite is analyzed by mixing nonlocal polymerization driven diffusion (NPDD) model and absorption modulation caused by the spatial concentration distribution difference of silver NPs.

View Article and Find Full Text PDF

Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model.

Opt Express

December 2011

UCD School of Electrical, Electronic and Mechanical Engineering, College of Engineering, Mathematical and Physical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

The development of suitable recording media for applications such as holographic optical elements and holographic data storage are of significant research and commercial interest. In this paper, a photopolymer material developed by Bayer MaterialScience is examined using various optical techniques and then characterised using the Non-local Photo-polymerization Driven Diffusion model. This material demonstrates the capabilities of a new class of photopolymer offering high index modulation, full colour recording, high light sensitivity and environmental stability.

View Article and Find Full Text PDF

An understanding of the photochemical and photo-physical processes, which occur during photopolymerization is of extreme importance when attempting to improve a photopolymer material's performance for a given application. Recent work carried out on the modelling of the mechanisms which occur in photopolymers during- and post-exposure, has led to the development of a tool, which can be used to predict the behaviour of these materials under a wide range of conditions. In this paper, we explore this Non-local Photo-polymerisation Driven Diffusion model, illustrating some of the useful trends, which the model predicts and we analyse their implications on the improvement of photopolymer material performance.

View Article and Find Full Text PDF

The nonlocal polymerization-driven diffusion model (NPDD) has been shown to predict high spatial frequency cut-off in photopolymers and to accurately predict higher order grating components. We propose an extension to the NPDD model to account for the temporal response associated with polymer chain growth. An exponential response function is proposed to describe transient effects during the polymerization process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!