An optical waveguide amplifier fabricated on erbium-ytterbium-doped phosphate glass by direct femtosecond laser writing is demonstrated. The waveguides are manufactured using 1040-nm radiation from a diode-pumped cavity-dumped Yb:KYW oscillator, operating at a 885 kHz repetition rate, with a 350 fs pulse duration. Peak internal gain of 9.2 dB is obtained at 1535 nm, with a minimum internal gain of 5.2 dB at 1565 nm. Relatively low insertion losses of 1.9 dB enable for the first time an appreciable net gain in the full C-band of optical communications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/opex.13.005976DOI Listing

Publication Analysis

Top Keywords

waveguide amplifier
8
femtosecond laser
8
laser writing
8
internal gain
8
c-band waveguide
4
amplifier produced
4
produced femtosecond
4
writing optical
4
optical waveguide
4
amplifier fabricated
4

Similar Publications

The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.

View Article and Find Full Text PDF

Tapered diode lasers, composed of an index-guided ridge waveguide and a gain-guided tapered amplifier, are affected by polarization mismatch between the ridge and tapered sections. Beam quality deterioration is caused by TM high-order modes generated in the ridge section. Under high current injection, these TM modes are further amplified in the tapered section due to polarization mismatch, leading to a decrease in the laser output brightness.

View Article and Find Full Text PDF

We present a novel and efficient methodology for obtaining high-gain on-chip few-mode erbium-doped waveguide amplifiers, which exhibit a moderate differential mode gain (DMG). The efficiency of the device is validated by an optimized algorithm that theoretically models the gain performance of the six lowest-order optical modes, namely TE, TM, TE, TM, TE, and TM. Notably, these six signal modes achieve internal net gains exceeding 22 dB within a 5-cm-long waveguide, while maintaining the DMG at a mere 2 dB.

View Article and Find Full Text PDF

In this work, a five-mode erbium-doped waveguide amplifier with low differential modal gain (DMG) is first proposed. A novel, to the best of our knowledge, gain equalization scheme for synergistic reconfiguration of refractive index and concentration doping is adopted to equalize the modal gains based on the dual-layer ring core structure. NaYF:5%Gd,20%Yb,2%Er@NaYF nanoparticles are synthesized by annealing treatment to improve the emission spectral properties and the concentration doped in a host core material.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, type of semiconductor optical amplifier (SOA) with improved energy efficiency is presented conceptually and simulated numerically, using parameters based on a well-established heterogeneous photonic integration platform. The SOA has a confinement factor that can be varied by a waveguide design only, and thus the gain, loss, and saturation can be tailored along the light propagation direction. By using a tapered waveguide, the SOA can be designed for high gain at the input and high saturation at the output.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!