We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/opex.13.004869 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
Qualitative analysis in mathematical modeling has become an important research area within the broad domain of nonlinear sciences. In the realm of qualitative analysis, the bifurcation method is one of the significant approaches for studying the structure of orbits in nonlinear dynamical systems. To apply the bifurcation method to the (2 + 1)-dimensional double-chain Deoxyribonucleic Acid system with beta derivative, the bifurcations of phase portraits and chaotic behaviors, combined with sensitivity and multi-stability analysis of this system, are examined.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, U.K.
Accurate prediction of chlorophyll- (Chl-) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl- concentrations in large lakes. Monthly remote-sensed Chl- data derived from Aqua-MODIS spanning September 2002 to April 2024 were used.
View Article and Find Full Text PDFLow-temperature phase (β-form) barium borate (BBO) is one of the most important nonlinear crystals that has been widely used for optical second-harmonic generation (SHG), especially with femtosecond sources. There was growing interest in its applications in the direct generation of terahertz (THz) radiations, but it was hindered by the lack of knowledge of its basic properties in the THz range. In a recent study based on first-principles quantum chemistry calculation, we found that the theoretically calculated refractive indices of β-BBO in the THz frequency range do not agree with the previously reported values.
View Article and Find Full Text PDFHomodyne interferometers (HIs) utilize differential signaling to reduce common-mode noise and enhance measurement stability. However, their potential to improve measurement accuracy has not been thoroughly investigated. To address this gap, we reveal two unrecognized mechanisms enabled by differential-output signal (DS): self-compensation for odd-order periodic nonlinear error (PNE) and mitigation of PNE caused by ghost reflections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!